Lecture 18: Virtual Memory

CS 105 Spring 2024

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data oo Data
Code Code Code

- Process provides each program with two key abstractions:
- Logical control flow
- Each program seems to have exclusive use of the CPU
« Provided by kernel mechanism called context switching
- Private address space
- Each program seems to have exclusive use of main memory.
« Provided by kernel mechanism called virtual memory

Multiprocessing: The Reality

- Computer runs many processes simultaneously

- Running program “top” on Mac

- System has 123 processes, 5 of which are active
- ldentified by Process ID (PID)

Virtual Memory Goals

Stack

Heap

Data

Code

- Isolation: don’t want different

process states collided in
physical memory

- Efficiency: want fast

reads/writes to memory

- Sharing: want option to

overlap for communication

- Utilization: want best use of

limited resource

- Virtualization: want to create

illusion of more resources

Address Translation

Stack

Virtual Address

Data

MMU

-
-

<
28
O
QL
>
Q
Q
]
)
o
7

Base-and-Bound

Physical Memory

Fl
N ISH Virtual Memory
Stack
W
Heap Q
lﬁj Data
3 | Codelm Base
£

"

Base-and-Bound

Stack
] MMU
1 vaddr > Bound Exception
Heap
Data
Code

Exercise 1: Base-and-Bound

Assume that you are currently executing a process P with
Base 0x1234 and Bound 0x100.

- What is the physical address that corresponds to the
virtual address 0x477?

- What is the physical address that corresponds to the
virtual address 0x1237?

Evaluating Base-and-Bound

FINISH

k’égé% ZL

- Sharing: want option to

- Utilization: want best use of

- Virtualization: want to create

- Isolation: don’t want different

process states collided in
physical memory

- Efficiency: want fast

reads/writes to memory

overlap for communication

limited resource

illusion of more resources

Segmentation

Physical Memory

-+ DBound
DBase
Virtual Memory
Stack
Heap - HBound
— ase
Data
Code
- SBound
SBase
CBound
CBase

Segmentation

MMU
Stag
> . R,W offset > Bound]idx] T
1 idx | offset or access not aIIowe§
t vaddr R,W E——
——— =
R,W o
S
Heap R X
Data
Code

paddr = Base[idx] + offset

Data

Exercise 2. Segmentation

Assume that you are currently executing a process P with
the following segment table:

Ox4747 0x80 R,W
0x2424 0x40 R,W
0x0023 0x80 R,W
0x1000 0x200 R,X

- What is the physical address that corresponds to the
virtual address 0x0017?

- What is the physical address that corresponds to the
virtual address 0xD477?

Evaluating Segmentation

- Isolation: don’t want different
process states collided in
physical memory

- Efficiency: want fast &

reads/writes to memory

- Sharing: want option to
overlap for communication

- Utilization: want best use of
limited resource

o _Virtpalization: want to create
illusion of more resources

X

Page 7
Page 6
Page 5
Page 4
Page 3
Page 2
Page 1
Page 0

Virtual Memory
Stack |"
Heap e
Data
Code

Physical Memory

Frame 17

Frame 16
Frame 15

Frame 14

Frame 13

Frame 12
Frame 11

Frame 10

Frame 9
Frame 8
Frame 7

Frame 6
Frame 5

Frame 4
Frame 3

Frame 2
Frame 1

Frame O

MMU

Frame | Access

47
NULL
13

Data

RW [
access not allowed O
R,W ®
R,W g
R, X
paddr =| Frame[page#] | offset

Exercise 3: Paging

Assume that you are currently executing a process P with
the foIIowmg page table on a system with 16 byte pages:

m Access

OX1 7 0x47

0x16 OxF4 R,W
Ox15 NULL RW
0x14 0x23 R,X

. What is the physical address that corresponds to the
virtual address 0x1477?

- What is the physical address that corresponds to the
virtual address Ox16E?

Exercise 3: Paging

Assume that you are currently executing a process P with
the following page table on a system with 16 byte pages:

3l Frame | Access
Ox17 0x47 R,W
0x16 0xF4 RW
0x15 NULL R,W
0x14 0x23 RX

Memory as a Cache

- each page table entry has a
valid bit

- for valid entries, frame

indicates physical address of
page in memory

- a page fault occurs when a
program requests a page that
IS not currently in memory
- handled much like a cache miss

- evict another page in memory to
make space (which one?)

- takes time to handle, so context
switch

MMU
v | Frame | Access _
1 47 R,W
0 NULL RW
0 13 R,W
1 42 R,X

Thrashing

- working set is the collection of a pages a process requires
In a given time interval

- if it doesn't fit in memory, program will thrash

Exercise 4: Paging

Assume that you are currently executing a process P with
the foIIowmg page table on a system with 256 byte pages:

lm Access

250 1 0x47

249 1 0x24 R,W
248 0 NULL RW
247 0 0x23 R,X

- What is the physical address that corresponds to the
virtual address OxF9477?

- What is the physical address that corresponds to the
virtual address OxF7007?

Evaluating Paging

- Isolation: don’t want different
process states collided in
physical memory

- Efficiency: want fast
reads/writes to memory

- Sharing: want option to
overlap for communication

- Utilization: want best use of
limited resource

o _Virtpalization: want to create
illusion of more resources

QAR

