Lecture 18: Virtual Memory

CS 105 Spring 2024

Multiprocessing: The Illusion

- Process provides each program with two key abstractions:
 - Logical control flow
 - Each program seems to have exclusive use of the CPU
 - Provided by kernel mechanism called context switching
 - Private address space
 - Each program seems to have exclusive use of main memory.
 - Provided by kernel mechanism called virtual memory

Multiprocessing: The Reality

- Computer runs many processes simultaneously
- Running program "top" on Mac
 - System has 123 processes, 5 of which are active
 - Identified by Process ID (PID)

Virtual Memory Goals

- Isolation: don't want different process states collided in physical memory
- Efficiency: want fast reads/writes to memory
- Sharing: want option to overlap for communication
- Utilization: want best use of limited resource
- Virtualization: want to create illusion of more resources

Address Translation

Base-and-Bound

Base-and-Bound

Exercise 1: Base-and-Bound

Assume that you are currently executing a process P with Base 0x1234 and Bound 0x100.

- What is the physical address that corresponds to the virtual address 0x47?
- What is the physical address that corresponds to the virtual address 0x123?

Evaluating Base-and-Bound

 Isolation: don't want different process states collided in physical memory

 Efficiency: want fast reads/writes to memory

 Sharing: want option to overlap for communication

 Utilization: want best use of limited resource

 Virtualization: want to create illusion of more resources

Segmentation

Segmentation

Exercise 2: Segmentation

Assume that you are currently executing a process P with the following segment table:

Base	Bound	Access
0x4747	0x80	R,W
0x2424	0x40	R,W
0x0023	0x80	R,W
0x1000	0x200	R,X

- What is the physical address that corresponds to the virtual address 0x001?
- What is the physical address that corresponds to the virtual address 0xD47?

Evaluating Segmentation

 Isolation: don't want different process states collided in physical memory

 Efficiency: want fast reads/writes to memory

Sharing: want option to overlap for communication

 Utilization: want best use of limited resource

 Virtualization: want to create illusion of more resources

Paging

Exercise 3: Paging

Assume that you are currently executing a process P with the following page table on a system with 16 byte pages:

:	Frame	Access
0x17	0x47	R,W
0x16	0xF4	R,W
0x15	NULL	R,W
0x14	0x23	R,X
•		

- What is the physical address that corresponds to the virtual address 0x147?
- What is the physical address that corresponds to the virtual address 0x16E?

Exercise 3: Paging

Assume that you are currently executing a process P with the following page table on a system with 16 byte pages:

:	Frame	Access
0x17	0x47	R,W
0x16	0xF4	R,W
0x15	NULL	R,W
0x14	0x23	R,X

Memory as a Cache

- each page table entry has a valid bit
- for valid entries, frame indicates physical address of page in memory
- a page fault occurs when a program requests a page that is not currently in memory
 - handled much like a cache miss
 - evict another page in memory to make space (which one?)
 - takes time to handle, so context switch

MMU				
	V	Frame	Access	
	1	47	R,W	
	0	NULL	R,W	
	0	13	R,W	
	1	42	R,X	

Thrashing

- working set is the collection of a pages a process requires in a given time interval
- if it doesn't fit in memory, program will thrash

Exercise 4: Paging

Assume that you are currently executing a process P with the following page table on a system with 256 byte pages:

÷	V	Frame	Access
250	1	0x47	R,W
249	1	0x24	R,W
248	0	NULL	R,W
247	0	0x23	R,X

- What is the physical address that corresponds to the virtual address 0xF947?
- What is the physical address that corresponds to the virtual address 0xF700?

Evaluating Paging

 Isolation: don't want different process states collided in physical memory

 Efficiency: want fast reads/writes to memory

 Sharing: want option to overlap for communication

 Utilization: want best use of limited resource

 Virtualization: want to create illusion of more resources

