
CS 105 Spring 2024

Lecture 12: Caches (cont'd)

0.0

0.1

1.0

10.0

100.0

1,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Review: The CPU-Memory Gap

0.0

0.1

1.0

10.0

100.0

1,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

DRAM

CPU

SRAM

Review: Principle of Locality
Programs tend to use data and instructions with addresses
near or equal to those they have used recently

} Temporal locality:
} Recently referenced items are likely

to be referenced again in the near future

} Spatial locality:
} Items with nearby addresses tend

to be referenced close together in time

Review: Direct-mapped Cache

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find line

identifies byte in line

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

lin
es

) b
its

log
(bl

oc
k s

ize
) b

its

0

1

2

n-1

Checking the cache (i.e., "bookshelf"):
1. index tells you which line to check
2. Is that line valid?

• If no, cache miss
3. Does the tag match?

• If no, cache miss
4. If valid and tag matches, cache hit!

• Read from datablock at offset

valid bit tag data block

Review: Handling Cache Miss
When a cache miss occurs update
cache line at that index:

1. Set valid bit to 1
2. Update tag
3. Replace data block with bytes from

memory

0D 00 00 001011 00 00002F

00 00 00 1D0011 00 064000

0F 12 AB 681101 34 EAFFFF

00 11 22 770010 33 665544

Line 0

Line 1

Line 2

Line 3

Address of data: 0x74

0111 0100

3 b
it t

ag
2 b

it i
nd

ex
3 b

it o
ffs

et

011 10010

 0x73
 0x72
 0x71
 0x70
 0x6F
 0x6E

47

00

33
2F
0A

1A

 0x79
 0x78
 0x77
 0x76
 0x75
 0x74

B7

AB

64
15
E0

23

2F 33 47 640111 1A 15E0AB

Line 0 Line 1
0 47 48 0 47 48

Review: Direct-mapped Cache
Cache

Assume 8 byte data blocks

 0x74
 0x70
 0x6c
 0x68
 0x64
 0x60

17

13

16
15
14

18

Access tag idx off h/m
rd 0x60

rd 0x64

rd 0x70

rd 0x64

rd 0x64

rd 0x60

rd 0x70

0000 0000

How well does this take advantage of spacial locality?
How well does this take advantage of temporal locality?

Ti
m

e

00000110 Miss
1 0110 13 14

M
em

ory

10000110 Hit
00000111 Miss

1 0111 17 18
10000110 Miss
10000110 Hit

1 0110 13 14

00000110 Hit
00000111 Miss 1 0111 17 18

2-way Set Associative Cache
E = 2: Two lines per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

se
ts)

 bi
ts

log
(bl

oc
k s

ize
) b

its

Se
t 0

Se
t 1

Se
t 2

Se
t n

-1

rd 0x80

Exercise: 2-way Set Associative Cache
Cache 0x74

 0x70
 0x6c
 0x68
 0x64
 0x60

17

13

16
15
14

18

Access tag idx off h/m
rd 0x60

rd 0x64

rd 0x70

rd 0x64

rd 0x64

rd 0x60

rd 0x70

Ti
m

e

00000110 Miss

M
em

ory

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

Assume 8 byte data blocks
Set 0 Set 1

Set 0

Set 1

61 13 14
10000110 Hit
00000111 Miss

71 17 18
10000110 Hit
10000110 Hit
00000110 Hit
00000111 Hit

Access tag idx off h/m
rd 0x60

rd 0x64

rd 0x70

rd 0x64

rd 0x64

rd 0x60

rd 0x70

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

00000111 Miss

Eviction from the Cache
On a cache miss, a new block is loaded into the cache

• Direct-mapped cache: A valid block at the same location
must be evicted—no choice

• Associative cache: If all blocks in the set are valid, one
must be evicted
• Random policy
• FIFO
• LIFO
• Least-recently used; requires extra data in each set
• Most-recently used; requires extra data in each set
• Most-frequently used; requires extra data in each set

rd 0x80

Exercise: 2-way Set Associative Cache
Cache 0x74

 0x70
 0x6c
 0x68
 0x64
 0x60

17

13

16
15
14

18

Access tag idx off h/m
rd 0x60

rd 0x64

rd 0x70

rd 0x64

rd 0x64

rd 0x60

rd 0x70

Ti
m

e

00000110 Miss

M
em

ory

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

Assume 8 byte data blocks
Set 0 Set 1

Set 0

Set 1

61 13 14
10000110 Hit
00000111 Miss

71 17 18
10000110 Hit
10000110 Hit
00000110 Hit
00000111 Hit
00000111 Miss

Access tag idx off h/m
rd 0x60

rd 0x64

rd 0x70

rd 0x64

rd 0x64

rd 0x60

rd 0x70

rd 0x80
81 21 22

Line 0 Line 1 Line 0 Line 1
0 0 47 48 0 1 47 48 0 0 47 48 0 1 47 48

Caching and Writes
• What to do on a write-hit?

• Write-through: write immediately to memory
• Write-back: defer write to memory until replacement of line

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate: load into cache, update line in cache

• Good if more writes to the location follow
• No-write-allocate: writes straight to memory, does not load into

cache
• Typical

• Write-through + No-write-allocate
• Write-back + Write-allocate

Exercise: Write-back + Write-allocate
Cache

Assume 4 byte data blocks

Line 0 Line 1 Line 2 Line 3 W
0 0 47 0 1 47 0 2 47 0 3 47

Memory
0x24
0x20
0x1c
0x18
0x14
0x10

21

17

20
19
18

22

Access tag idx off h/m
rd 0x10
wr 8,0x10
wr 9,0x24
rd 0x24
rd 0x20

0001 00 00 m 11 17
0001 00 00 h 11 8
0010 01 00 m 21 9
0010 01 00 h
0010 00 00 m 21 21

N
N
N

N
Y

8

Line 0 Line 1 Line 2 Line 3 W
0 0 47 0 1 47 0 2 47 0 3 47

Access tag idx off h/m
rd 0x10
wr 8,0x10
wr 9,0x24
rd 0x24
rd 0x20

Memory Hierarchy
Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Typical Intel Core i7 Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 d-cache and i-cache:

32 KB, 8-way
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way
Access: 10 cycles

L3 unified cache:
8 MB, 16-way
Access: 40-75 cycles

Block size: 64 bytes for all
caches.

Caching Organization Summarized
• A cache consists of lines

• A line contains
• A block of bytes, the data values from memory
• A tag, indicating where in memory the values are from
• A valid bit, indicating if the data are valid

• Lines are organized into sets
• Direct-mapped cache: one line per set
• k-way associative cache: k lines per set
• Fully associative cache: all lines in one set

• Caches handle both reads and writes
• write-through: write to both cache and memory
• write-back: write only to cache, write to memory on evict,
• write-allocate: alloc on any miss
• no-write allocate: alloc only on read miss

