
CS 105 Spring 2024

Lecture 4: Floats

Review: Representing Integers
• unsigned:

• signed (two's complement):

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

-128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

• Representation
• Bits to right of “binary point” represent fractional powers of 2
• Represents rational number: ∑!"#$% (𝑏! ⋅ 2!)

• • •

Fractional binary numbers

Example: Fractional Binary Numbers
• What is 1001.1012?

• What is the binary representation of 13 9/16?

= 𝟖 + 𝟏 +
𝟏
𝟐 +

𝟏
𝟖 = 𝟗

𝟓
𝟖 = 𝟗. 𝟔𝟐𝟓

1101.1001

Exercise 1: Fractional Binary Numbers
• Translate the following fractional numbers to their binary

representation
• 5 3/4
• 2 7/8
• 1 7/16

• Translate the following fractional binary numbers to their
decimal representation
• .011

• .11

• 1.1

Representable Numbers
• Limitation #1

• Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations
• Value Representation

• 1/3 0.0101010101[01]…2
• 1/5 0.001100110011[0011]…2
• 1/10 0.0001100110011[0011]…2

• Limitation #2
• Just one setting of binary point within the w bits
• Limited range of numbers (very small values? very large?)

• Numerical Form: −1 * ⋅ 𝑀 ⋅ 2+
• Sign bit 𝑠 determines whether number is negative or positive
• Significand 𝑀 normally a (binary) fractional value in range [1.0,2.0)
• Exponent 𝐸 weights value by power of two

• Examples:
• 1.0
• 1.25
• 64
• -.625

Floating Point Representation

Exercise 2: Floating Point Numbers
• For each of the following numbers, specify a binary

fractional number M in [1.0,2.0) and a binary number E
such that the number is equal to 𝑀 ⋅ 2+

• 5 3/4
• 2 7/8
• 1 1/2
• 3/4

• Numerical Form: −1 * ⋅ 𝑀 ⋅ 2+
• Sign bit 𝑠 determines whether number is negative or positive
• Significand 𝑀 normally a fractional value in range [1.0,2.0)
• Exponent 𝐸 weights value by power of two

• Encoding:

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)
• normally 𝐸 = 𝑒!"#…𝑒#𝑒$ − (2!"# − 1)

• frac field encodes M (but is not equal to M)
• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

Floating Point Representation

𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'

bias

Float (32 bits):
• k = 8, n = 23
• bias = 127
Double (64 bits)
• k=11, n = 52
• bias = 1023

Example: Floats
• What fractional number is represented by the bytes

0x3ec00000? Assume big-endian order.
𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'

Float (32 bits):
• k = 8, n = 23
• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 	𝑒!"#…𝑒#𝑒$ − (2!"# − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

0011 1110 1100 0000 0000 0000 0000 0000
s=0 exp=125 frac = 100000000000000000000002

s=0 E = -2 M = 1.100000000000000000000002 = 1.510

−1 $ ⋅ 1.5#$ ⋅ 2"& = 1 ⋅
3
2 ⋅
1
4 =

3
8 =	. 𝟑𝟕𝟓𝟏𝟎

−1 $ ⋅ 1.1& ⋅ 2"& =	.011&=
1
4 +

1
8 =	. 𝟑𝟕𝟓𝟏𝟎

−1 * ⋅ 𝑀 ⋅ 2+

Exercise 3: Floats
• What fractional number is represented by the bytes

0x423c0000? Assume big-endian order.
𝑠 exp = 𝑒!#&…𝑒&𝑒' frac = 𝑓(#&…𝑓&𝑓'

Float (32 bits):
• k = 8, n = 23
• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 	𝑒!"#…𝑒#𝑒$ − (2!"# − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$ −1 * ⋅ 𝑀 ⋅ 2+

Limitation so far…
• What is the smallest non-negative number that can be

represented?

0000 0000 0000 0000 0000 0000 0000 0000
s=0 exp=0 frac = 000000000000000000000002

s=0 E = -127 M = 1.000000000000000000000002

−1 $ ⋅ 1.0& ⋅ 2"#&) = 2"#&)

s exp frac
1 8-bits 23-bits

Normalized and Denormalized

−1 * ⋅ 𝑀 ⋅ 2+

Normalized Values
• exp is neither all zeros nor all ones (normal case)
• exponent is defined as E = 𝑒!#&…𝑒&𝑒' − bias, where
bias = 2!#& − 1 (e.g., 127 for float or 1023 for double)

• significand is defined as 𝑀 = 1. 𝑓(#&𝑓(#)…𝑓'

• Denormalized Values
• exp is either all zeros or all ones
• if all zeros: E = 1 − bias and 𝑀 = 0. 𝑓(#&𝑓(#)…𝑓'
• if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

s exp frac

Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

Example: Limits of Floats
• What is the difference between the largest (non-infinite)

positive number that can be represented as a
(normalized) float and the second-largest?

s exp frac
1 8-bits 23-bits

Example: Limits of Floats
• What is the difference between the largest (non-infinite)

positive number that can be represented as a
(normalized) float and the second-largest?

s exp frac
1 8-bits 23-bits

0111 1111 0111 1111 1111 1111 1111 1111
s=0 E = 127 M = 1.111111111111111111111112

largest = 1.11111111111111111111111? ⋅ 2@?A
second_largest = 1.11111111111111111111110? ⋅ 2@?A

diff = 0.00000000000000000000001? ⋅ 2@?A = 1? ⋅ 2@?AB?C = 𝟐𝟏𝟎𝟒

• Example 1: Is (x + y) + z = x + (y + z)?
• Ints: Yes!
• Floats:
• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ 0.0

Correctness

Floating Point Operations
• All of the bitwise and logical operations still work
• Float arithmetic operations done by separate hardware

unit (FPU)

Floating Point Addition
• Float operations done by separate hardware unit (FPU)
• 𝐹! + 𝐹" = −1 #* ⋅ 𝑀! ⋅ 2$* + −1 #* ⋅ 𝑀! ⋅ 2$*
• Assume E1 >= E2

• Exact Result: −1 # ⋅ 𝑀 ⋅ 2$
• Sign s, significand M:

• Result of signed align & add
• Exponent E: E1

• Fixing
• If M ≥ 2, shift M right, increment E
• if M < 1, shift M left k positions, decrement E by k
• Overflow if E out of range
• Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

Get binary points lined up

Floating Point Multiplication
• 𝐹@ ⋅ 𝐹? = −1 *! ⋅ 𝑀@ ⋅ 2+! ⋅ −1 *! ⋅ 𝑀@ ⋅ 2+!
• Exact Result: −1 * ⋅ 𝑀 ⋅ 2+

• Sign s: s1 ^ s2
• Significand M: M1 x M2
• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E
• If E out of range, overflow
• Round M to fit frac precision

• Implementation
• Biggest chore is multiplying significands

Floating Point in C
• C Guarantees Two Levels

• float single precision (32 bits)
• double double precision (64 bits)

• Conversions/Casting
• Casting between int, float, and double changes bit
representation
• double/float → int

• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN: Generally sets to TMin

• int → double
• Exact conversion,

• int → float
• Will round

