Lecture 4: Floats

CS 105
Spring 2024

Review: Representing Integers

- unsigned:
$128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{2}\right)$

- signed (two's complement):
$-128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)$

Fractional binary numbers

- Representation
- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i}\left(b_{k} \cdot 2^{k}\right)$

Example: Fractional Binary Numbers

- What is 1001.101_{2} ?

$$
=8+1+\frac{1}{2}+\frac{1}{8}=9 \frac{5}{8}=9.625
$$

- What is the binary representation of $139 / 16 ?$

$$
1101.1001
$$

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
- $53 / 4$
- $27 / 8$
- $17 / 16$
- Translate the following fractional binary numbers to their decimal representation
. . 011
. . 11
- 1.1

Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form $x / 2^{k}$
- Other rational numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101[01]...2
- $1 / 50.001100110011[0011] \ldots$
- $1 / 100.0001100110011[0011]$...2
- Limitation \#2
- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a (binary) fractional value in range [1.0,2.0)
- Exponent E weights value by power of two
- Examples:
- 1.0
- 1.25
- 64
- -. 625

Exercise 2: Floating Point Numbers

- For each of the following numbers, specify a binary fractional number M in $[1.0,2.0$) and a binary number E such that the number is equal to $M \cdot 2^{E}$
- $53 / 4$
- $27 / 8$
- $11 / 2$
- $3 / 4$

Floating Point Representation

- Numerical Form: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range $[1.0,2.0$)
- Exponent E weights value by power of two
- Encoding:

$$
\begin{array}{|l|l|l|}
\hline s & \exp =e_{k-1} \ldots e_{1} e_{0} & \text { frac }=f_{n-1} \ldots f_{1} f_{0} \\
\hline
\end{array}
$$

- s is sign bit s
- \exp field encodes E (but is not equal to E)
- normally $E=e_{k-1} \ldots e_{1} e_{0}-\left(2^{k-1}-1\right)$-bias
- frac field encodes M (but is not equal to M)
- normally $M=1 . f_{n-1} \ldots f_{1} f_{0}$

Float (32 bits):

- $k=8, n=23$
- bias $=127$

Double (64 bits)

- $\mathrm{k}=11, \mathrm{n}=52$
- bias = 1023

Example: Floats

- What fractional number is represented by the bytes $0 \times 3 \mathrm{c} 00000$? Assume big-endian order.

s	$\exp =e_{k-1} \ldots e_{1} e_{0}$	frac $=f_{n-1} \ldots f_{1} f_{0}$

- s is sign bit s
- $\quad \exp$ field encodes E (but is not equal to E)
- normally $E=e_{k-1} \ldots e_{1} e_{0}-\left(2^{k-1}-1\right)$
- frac field encodes M (but is not equal to M)
- normally $M=1 . f_{n-1} \ldots f_{1} f_{0}$

Float (32 bits):

- $k=8, n=23$
- bias $=127$

$$
(-1)^{S} \cdot M \cdot 2^{E}
$$

00111110110000000000000000000000

$\begin{array}{lll}s=0 & \text { exp }=125 & \text { frac }=10000000000000000000000_{2} \\ s=0 & E=-2 & M=1.10000000000000000000000_{2}=1.5_{10}\end{array}$
$(-1)^{0} \cdot 1.5_{10} \cdot 2^{-2}=1 \cdot \frac{3}{2} \cdot \frac{1}{4}=\frac{3}{8}=.375_{10}$

$$
(-1)^{0} \cdot 1.1_{2} \cdot 2^{-2}=.011_{2}=\frac{1}{4}+\frac{1}{8}=.375_{10}
$$

Exercise 3: Floats

- What fractional number is represented by the bytes 0x423c0000? Assume big-endian order.

s	$\exp =e_{k-1} \ldots e_{1} e_{0}$	frac $=f_{n-1} \ldots f_{1} f_{0}$

- s is sign bit s
- exp field encodes E (but is not equal to E)
- normally $E=e_{k-1} \ldots e_{1} e_{0}-\left(2^{k-1}-1\right)$
- frac field encodes M (but is not equal to M)
- normally $M=1 . f_{n-1} \ldots f_{1} f_{0}$

Float (32 bits):

- $k=8, n=23$
- bias $=127$

$$
(-1)^{S} \cdot M \cdot 2^{E}
$$

\section*{| s | exp | frac | |
| :--- | :--- | :--- | :--- |
| 1 | 8-bits | 23-bits | | Limitation so far...}

-What is the smallest non-negative number that can be represented?

00000000000000000000000000000000
$\begin{array}{lll}s=0 & \text { exp }=0 & f r a c=00000000000000000000000_{2} \\ s=0 & E=-127 & M=1.00000000000000000000000_{2}\end{array}$

$$
(-1)^{0} \cdot 1.0_{2} \cdot 2^{-127}=2^{-127}
$$

Normalized and Denormalized

s	\exp	frac

$$
(-1)^{S} \cdot M \cdot 2^{E}
$$

Normalized Values

- exp is neither all zeros nor all ones (normal case)
- exponent is defined as $\mathrm{E}=e_{k-1} \ldots e_{1} e_{0}$ - bias, where bias $=2^{k-1}-1$ (e.g., 127 for float or 1023 for double)
- significand is defined as $M=1 . f_{n-1} f_{n-2} \ldots f_{0}$
- Denormalized Values
- exp is either all zeros or all ones
- if all zeros: $\mathrm{E}=1$ - bias and $M=0 . f_{n-1} f_{n-2} \ldots f_{0}$
- if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings

\section*{| s | \exp | frac | |
| :--- | :--- | :--- | :--- |
| 1 | 8-bits | 23-bits | | Example: Limits of Floats}

- What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

\section*{| s | \exp | frac | |
| :--- | :--- | :--- | :--- |
| 1 | 8-bits | 23-bits | |
 Example: Limits of Floats}

- What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

01111111011111111111111111111111

$\mathrm{s}=0 \quad \mathrm{E}=127 \quad \mathrm{M}=1.1111111111111111111111_{2}$
largest $=1.11111111111111111111111_{2} \cdot 2^{127}$
second_largest $=1.11111111111111111111110_{2} \cdot 2^{127}$
diff $=0.00000000000000000000001_{2} \cdot 2^{127}=1_{2} \cdot 2^{127-23}=2^{104}$

Correctness

- Example 1: Is $(x+y)+z=x+(y+z)$?
- Ints: Yes!
- Floats:
- $\left(2^{\wedge} 30+-2^{\wedge} 30\right)+3.14 \rightarrow 3.14$
- $2^{\wedge} 30+\left(-2^{\wedge} 30+3.14\right) \rightarrow 0.0$

Floating Point Operations

- All of the bitwise and logical operations still work
- Float arithmetic operations done by separate hardware unit (FPU)

Floating Point Addition

- Float operations done by separate hardware unit (FPU)
- $F_{1}+F_{2}=(-1)^{s_{1}} \cdot M_{1} \cdot 2^{E_{1}}+(-1)^{s_{1}} \cdot M_{1} \cdot 2^{E_{1}}$
- Assume E1 >= E2

Get binary points lined up

- Exact Result: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign s, significand M:
- Result of signed align \& add
- Exponent E: E1
- Fixing

$(-1)^{\mathrm{s}} \mathrm{M}$
- If $M \geq 2$, shift M right, increment E
- if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Floating Point Multiplication

- $F_{1} \cdot F_{2}=(-1)^{s_{1}} \cdot M_{1} \cdot 2^{E_{1}} \cdot(-1)^{s_{1}} \cdot M_{1} \cdot 2^{E_{1}}$
- Exact Result: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign s:
s1 ^ s2
- Significand M:

M1 x M2

- Exponent E:

E1 + E2

- Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

Floating Point in C

- C Guarantees Two Levels
- float single precision (32 bits)
- double double precision (64 bits)
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion,
- int \rightarrow float
- Will round

