Lecture 3: Representing Signed Integers

CS 105 Fall 2023

Review: Binary Numbers

128 (27) 64 (2) 32(25) 16(24) 8(23) 4(22) 2(2) 1(29

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
- Signed(x) = (—1)*w-1 . YW 2, . 2

+- 64(2) 32(25 16(24 8(23) 4(2?)

2 (21)

1 (29

Representing Signed Integers

- Option 2: excess-K

- Choose a positive K in the middle of the unsigned range
. Signed(x) = {";01 X; 2t — w1

128 (27) 64 (2°) 32(25) 16(24) 8(23) 4(22) 2(21) 1(29

/ Vo & ¢ -
0 0 0

-128

Representing Signed Integers

- Option 3: two’s complement

- Like unsigned, except the high-order contribution is negative
- Signed(x) = —xy_1 - 2V 4+ YW 2 x; - 2

128 (-27) 64(2) 32(25) 16(24) 8(23) 4(22) 2(2) 1(29

RUe s s .

Example: Three-bit integers
mm - For signed ints:

A O LA o ~2DN WM OOOO

110
101
100
011
010
001
000

011
010
001
000
111
110
101
100

- high-order bit is O for pos
values, 1 for neg

- 000...01s 0
- 111...1is -1
- Same representation as

unsigned for numbers
that can be represented
with both

e ~X+1 == -1%*X

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:
- What is the binary representation for 477
- What is the binary representation for -477?
- What is the number represented by 10000110?
- What is the number represented by 001001017

Casting between Numeric Types

- Casting from shorter to longer types preserves the value

- Casting from longer to shorter types drops the high-order
bits

- Casting between signed/unsigned types preserves the
bits (it just changes the interpretation)

- Implicit casting occurs in assignments and parameter
lists. In mixed expressions, signed values are implicitly

cast to unsigned
- Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -=-3;
- Complete the following table

| Expression | Decimal | Binary
X -17

sy -3
(unsigned int) x

(int) sy
(short) x

When to Use Unsigned

- Rarely

- When doing multi-precision arithmetic, or when you need
an extra bit of range ... but be careful!

for (unsigned int i = cnt-2; i >= 0; i--){
af[i] += a[i+l];

}

Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on
integer binary types

Integer Integer
Operand Operand

v v

A \/ B
Status
Status
Opcode Y

Integer
Result

Bitwise vs Logical Operations in C

- Bitwise Operators &, |, ~, A
- View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, |, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return 0 or 1
- Early termination

- Shift operators <<, >>

- Left shift fills with zeros
- For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

- What is the binary representation of each of the following
expressions? Assume signed char data type (one byte).

1. ~(-30)
2. -30 & 23
3. -30 && 23

4. -30 >> 2

Addition Example

- Compute 5 + -3 assuming all ints are stored as four-bit
signed values

1 1
0101

+ 1101
O0O10O =2(Base-10)

Exactly the same as unsigned numbers!
... but with different error cases

Addition/Subtraction with Overflow

- Compute 5 + 6 assuming all ints are stored as four-bit
signed values

1
0101

+ 0110
1011 =-5(Base-10)

Error Cases

- Assume w-bit signed values

—2.2w-1 —2w-1 0 2w-1—1 2-(2¥1-1)
o o o o o

[]

representable values

~r
[

Possible values of x + y

x+y — 2% (positive overflow)
c x4l y=<x+y (normal)
x+y+2Y (negative overflow)

- overflow has occurred iff x >0andy > 0and x +f, y < 0
orx<O0andy<Oandx+{ y>0

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their
sum and indicate whether or not an overflow occurred

x|y | xty loverflow?

00010 00101
01100 00100
10100 10001

Multiplication Example

- Compute 3 x 2 assuming all ints are stored as four-bit

signed values
O011
XO0010

O 00O
+0011
O11 0O =6(Base-10)

Exactly like unsigned multiplication!
... except with different error cases

Multiplication Example

- Compute 5 x 2 assuming all ints are stored as four-bit

signed values
0101
XO0010

O 000
+0101
101 0O =-6(Base-10)

Error Cases

- Assume w-bit unsigned values

_22(W—1) _2W—1 O 2W—1 _ 1 22(w—1)
@ O O O o—

[
L
representable values

—
Nl

Possible values of x %y

e x *L, vy = U2T((x - y) mod 2V)

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their
product and indicate whether or not an overflow occurred

x|y | xy loverflow?
100

101
010 011
111 010

