Lecture 3: Representing Signed Integers

CS 105
Fall 2023

Review: Binary Numbers

$$
128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)
$$

1

0
0
1
0
1
1
1
1

1
1
1
1
1
1
1
1

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
- Signed $(x)=(-1)^{x_{w-1}} \cdot \sum_{i=0}^{w-2} x_{i} \cdot 2^{i}$

$+/-$	$64\left(2^{6}\right)$	$32\left(2^{5}\right)$	$16\left(2^{4}\right)$	$8\left(2^{3}\right)$	$4\left(2^{2}\right)$	$2\left(2^{1}\right)$	$1\left(2^{0}\right)$
0	0	0	0	0	1	0	1
1	0	0	0	0	1	0	1
1	1	1	1	1	1	1	1

Representing Signed Integers

- Option 2: excess-K
- Choose a positive K in the middle of the unsigned range
- Signed $(x)=\sum_{i=0}^{w-1} x_{i} \cdot 2^{i}-2^{w-1}$
$128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right) \quad-128$

1
0
0
0

0

1

1
1
1
1
1
1
1
1

Representing Signed Integers

- Option 3: two's complement
- Like unsigned, except the high-order contribution is negative
- $\operatorname{Signed}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \cdot 2^{i}$

$$
\begin{array}{llllll}
-128\left(-2^{7}\right) & 64\left(2^{6}\right) & 32\left(2^{5}\right) & 16\left(2^{4}\right) & 8\left(2^{3}\right) & 4\left(2^{2}\right)
\end{array} 2\left(2^{1}\right) \quad 1\left(2^{0}\right)
$$

1

1
0
0
0
0
1
0
1

1
1
1
1
1
1
1
1

Example: Three-bit integers

Base-10	unsigned	signed
7	111	
6	110	
5	101	
4	100	
3	011	011
2	010	010
1	001	001
0	000	000
-1		111
-2		110
-3		101
-4		100

- For signed ints:
- high-order bit is 0 for pos values, 1 for neg
-000... 0 is 0
- 111... 1 is -1
- same representation as unsigned for numbers that can be represented with both
- $\sim x+1==-1^{*} x$

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:

- What is the binary representation for 47 ?
-What is the binary representation for -47 ?
-What is the number represented by $10000110 ?$
-What is the number represented by $00100101 ?$

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types drops the high-order bits
- Casting between signed/unsigned types preserves the bits (it just changes the interpretation)
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
- Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int $\mathrm{x}=-17$; short sy $=-3$;
- Complete the following table

Expression	Decimal	Binary
x	-17	
sy	-3	
(unsigned int) x		
(int) sy		
(short) x		

When to Use Unsigned

- Rarely
- When doing multi-precision arithmetic, or when you need an extra bit of range ... but be careful!

```
for (unsigned int i = cnt-2; i >= 0; i--){
    a[i] += a[i+1];
}
```


Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators \&, I, ~, ^
- View arguments as bit vectors
- operations applied bit-wise in parallel
- Logical Operators \&\&, ||, !
- View 0 as "False"
- View anything nonzero as "True"
- Always return 0 or 1
- Early termination
- Shift operators <<, >>
- Left shift fills with zeros
- For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

-What is the binary representation of each of the following expressions? Assume signed char data type (one byte).

1. $\sim(-30)$
2. $-30 \& 23$
3. $-30 \& \& 23$
4. $-30 \gg 2$

Addition Example

- Compute $5+-3$ assuming all ints are stored as four-bit signed values

$$
\begin{array}{r}
11 \\
0101 \\
+1101 \\
\hline 0010=2(\text { Base-10) }
\end{array}
$$

Exactly the same as unsigned numbers!
... but with different error cases

Addition/Subtraction with Overflow

- Compute $5+6$ assuming all ints are stored as four-bit signed values

$$
\begin{array}{r}
1 \\
0101 \\
+0110 \\
\hline 1011=-5(\text { Base-10 })
\end{array}
$$

Error Cases

- Assume w-bit signed values

$\cdot x+{ }_{w}^{t} y=\left\{\begin{array}{lr}x+y-2^{w} & \text { (positive overflow) } \\ x+y & \text { (normal) } \\ x+y+2^{w} & \text { (negative overflow) }\end{array}\right.$
- overflow has occurred iff $x>0$ and $\mathrm{y}>0$ and $x+{ }_{w}^{t} y<0$ or $x<0$ and $\mathrm{y}<0$ and $x+{ }_{w}^{t} y>0$

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their sum and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}+\mathbf{y}$	overflow?
00010	00101		
01100	00100		
10100	10001		

Multiplication Example

- Compute 3×2 assuming all ints are stored as four-bit signed values

$$
\begin{array}{r}
0011 \\
\times 0010 \\
\hline 0000 \\
+00110 \\
\hline 0110=6(\text { Base-10) }
\end{array}
$$

Exactly like unsigned multiplication! ... except with different error cases

Multiplication Example

- Compute 5×2 assuming all ints are stored as four-bit signed values

$$
\begin{array}{r}
0101 \\
\times 0010 \\
\hline 0000 \\
+01010 \\
\hline 1010=-6 \text { (Base-10) }
\end{array}
$$

Error Cases

- Assume w-bit unsigned values

- $x *_{w}^{t} y=U 2 T\left((x \cdot y) \bmod 2^{w}\right)$

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their product and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}^{*} \mathbf{y}$	overflow?
100	101		
010	011		
111	010		

