Lecture 3: Representing Signed Integers

CS 105

Fall 2023

Review: Binary Numbers

128 (2⁷) **64** (2⁶) **32** (2⁵) **16** (2⁴) **8** (2³) **4** (2²) **2** (2¹) **1** (2⁰)

0	0	0	0	0	1	0	1

0	0	1	0	1	1	1	1

Representing Signed Integers

- Option 1: sign-magnitude
 - One bit for sign; interpret rest as magnitude
 - $Signed(x) = (-1)^{x_{w-1}} \cdot \sum_{i=0}^{w-2} x_i \cdot 2^i$

64 (2⁶) 32 (2⁵) 16 (2⁴) 8 (2³) **4 (2**²) **2 (2**¹) **1 (2⁰)** +/-

Representing Signed Integers

- Option 2: excess-K
 - Choose a positive K in the middle of the unsigned range
 - $Signed(x) = \sum_{i=0}^{w-1} x_i \cdot 2^i 2^{w-1}$

Representing Signed Integers

- Option 3: two's complement
 - Like unsigned, except the high-order contribution is *negative*
 - Signed(x) = $-x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$

Example: Three-bit integers

Base-10	unsigned	signed
7	111	
6	110	
5	101	
4	100	
3	011	011
2	010	010
1	001	001
0	000	000
-1		111
-2		110
-3		101
-4		100

• For signed ints:

- high-order bit is 0 for pos values, 1 for neg
- 000...0 is 0
- 111…1 is -1
- same representation as unsigned for numbers that can be represented with both

•
$$\sim x+1 = -1^*x$$

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:

- What is the binary representation for 47?
- What is the binary representation for -47?
- What is the number represented by 10000110?
- What is the number represented by 00100101?

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types drops the high-order bits
- Casting between signed/unsigned types preserves the bits (it just changes the interpretation)
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
 - Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -3;
- Complete the following table

Expression	Decimal	Binary
X	-17	
sy	-3	
(unsigned int) x		
(int) sy		
(short) x		

When to Use Unsigned

- Rarely
- When doing multi-precision arithmetic, or when you need an extra bit of range ... but be careful!

```
for (unsigned int i = cnt-2; i >= 0; i--) {
    a[i] += a[i+1];
}
```

Arithmetic Logic Unit (ALU)

 circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators &, I, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, ||, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Shift operators << , >>

- Left shift fills with zeros
- For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

• What is the binary representation of each of the following expressions? Assume signed char data type (one byte).

1. ~(-30)

- 2. -30 & 23
- 3. -30 && 23

4. -30 >> 2

Addition Example

 Compute 5 + -3 assuming all ints are stored as four-bit signed values

$$\begin{array}{r}
 1 & 1 \\
 0 & 1 & 0 & 1 \\
 + & 1 & 1 & 0 & 1 \\
 & 0 & 0 & 1 & 0 & 0 \\
 \end{array}$$

Exactly the same as unsigned numbers! ... but with different error cases

Addition/Subtraction with Overflow

 Compute 5 + 6 assuming all ints are stored as four-bit signed values

Error Cases

Assume *w*-bit signed values

•
$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w} & \text{(positive overflow)} \\ x + y & \text{(normal)} \\ x + y + 2^{w} & \text{(negative overflow)} \end{cases}$$

• overflow has occurred iff x > 0 and y > 0 and $x +_w^t y < 0$ or x < 0 and y < 0 and $x +_w^t y > 0$

Exercise 4: Binary Addition

 Given the following 5-bit signed values, compute their sum and indicate whether or not an overflow occurred

x	У	x+y	overflow?
00010	00101		
01100	00100		
10100	10001		

Multiplication Example

 Compute 3 x 2 assuming all ints are stored as four-bit signed values

 $\begin{array}{c} 0 \ 0 \ 1 \ 1 \\ \underline{X \ 0 \ 0 \ 1 \ 0} \\ 0 \ 0 \ 0 \ 0 \ 0 \\ \underline{+ 0 \ 0 \ 1 \ 1 \ 0} \\ 0 \ 1 \ 1 \ 0 \ = 6 \ (Base-10) \end{array}$

Exactly like unsigned multiplication! ... except with different error cases

Multiplication Example

 Compute 5 x 2 assuming all ints are stored as four-bit signed values

 $\begin{array}{r} 0101\\ \underline{X0010}\\ 0000\\ \underline{+01010}\\ 1010 = -6 (Base-10) \end{array}$

Error Cases

• Assume *w*-bit unsigned values

•
$$x *_w^t y = U2T((x \cdot y) \mod 2^w)$$

Exercise 5: Binary Multiplication

 Given the following 3-bit signed values, compute their product and indicate whether or not an overflow occurred

x	У	x*y	overflow?
100	101		
010	011		
111	010		