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1. Optimization. You have just joined a new startup that is trying to develop the world’s fastest factorial
routine. Starting with recursive factorial, they converted to the code to use iteration:

int fact(int n){

int i;

int result = 1;

for (i=n; i > 0; i--){

result = result * i;

}

return result;

}

By doing so, they have reduced the number of cycles per element (CPE) for the function from around
63 to around 4 (really!). Still, they would like to do better.

(a) One of the programmers heard about loop unrolling. He generated the following code:

int fact_u2(int n){

int i;

int result = 1;

for (i = n; i > 0; i-=2){

result = (result *i) * (i-1);

}

return result;

}

Is this a valid optimization that a compiler might perform? If so, justify why the two functions
are equivalent. If not, state which values of n will return different values and show how to fix it.

No, optimization does not behave the same as original code. Will return 0 whenever n is odd.

int fact_u2(int n){

int i;
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int result = 1;

for (i = n; i > 1; i-=2){

result = (result *i) * (i-1);

}

return result;

}

(b) You modify the line inside the loop to read: result = result * (i * (i-1)); To every-
one’s astonishment, the measured performance now has a CPE of 2.5. How do you explain this
improved performance?

The multiplication i * (i-1) can overlap with the multiplication by result from the previous iter-
ation.

(c) Name two further changes might you make to try to further improve the performance of your
factorial function.

unroll loop, separate accumulators

(d) Show how to modify the code to improve the performance using the techniques identified in
Part1c.

int fact_u2(int n){

int result = 1;

int result2 = 1;

int result3 = 1;

int result4 = 1;

for (int i = n; i > 3; i-=4){

result = result * i;

result2 = result2 * (i-1);

result3 = result3 *(i-2);

result4 = result4 * (i-3);

}

result *= result2 * result3 * result4;

for(;i > 0; i--){

result *= i;

}

return result;

}
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2. Direct-Mapped Caches. The following table depicts a direct-mapped cache, with an 8 byte block
size and 4 cache lines:

Direct-Mapped Cache
Index Tag Valid Data

0 29 0 34 29 8E 00 39 AE AB 07
1 73 1 0D 8F AA E9 0C 3C EA 01
2 A7 1 88 4B E2 04 D2 13 B0 05
3 3B 1 AC 99 FF 1F B5 47 0D 00

You should assume:

• Memory is byte addressable. All memory accesses read/write 1-byte.

• Memory addresses are 12 bits.

(a) The box below depicts a 12-bit memory address. Indicate (by labeling the diagram) the fields
that would be used to determine (1) the tag, (2) the index, and (3) the offset.

11 10 9 8 7 6 5 4 3 2 1 0

CT: [11-5] CI: [4-3] CO: [2-0]

(b) Consider the following sequence of accesses (yes, they occur sequentially). For each access,
determine the tag, index, and offset. Then indicate whether that access would correspond to a
cache hit or a cache miss, and what byte is read (if the exact value is unknown because it is not
shown in the initial cache diagram, use the notation MEM[addr] instead of giving the byte).

Operation Tag Index Offset Hit? Byte read

i. Read 0xAB8 0x55 3 0 Miss Mem[0xAB8]

ii. Read 0xE68 0x73 1 0 Hit 0x0D

iii. Read 0x524 0x29 0 4 Miss Mem[0x524]

iv. Read 0xE6C 0x73 1 4 Hit 0x0C

v. Read 0x526 0x29 0 4 Hit Mem[0x526]

vi. Read 0x528 0x29 1 0 Miss Mem[0x528]

7-3


