
CS 105

Lecture 22: Semaphores and Conditional Variables

Problems with Locks

• Problem 1: Correct Synchronization with Locks is Hard

• Problem 2: Locks are Slow
• threads that fail to acquire a lock on the first attempt must "spin",

which wastes CPU cycles
• replace no-op with yield()

• threads get scheduled and de-scheduled while the lock is still
locked
• need a better synchronization primitive

Semaphores
• A semaphore s is a stateful synchronization primitive

comprised of:
• a value n (non-negative integer)
• a lock
• a queue

• Interface:
• init(sem_t * s, unsigned int val)
• P(sem_t * s): If s is nonzero, the P decrements s and returns

immediately. If s is zero, then adds the thread to queue(s); after
restarting, the P operation decrements s and returns.

• V(sem_t * s): Increments s by 1. If there are any threads in
queue(s), then V restarts exactly one of these threads, which then
completes the P operation.

Semantics of P and V
• P(sem_t * s)

• block (suspend thread) until value n > 0
• when n > 0, decrement n by one

• V(sem_t * s)
• increment value n b 1
• resume a thread waiting on s (if any)

P(sem_t * s){
while(s->n == 0){
;

}
s->n -= 1

}

V(sem_t * s){
s->n += 1

}

Why P and V?
• Edsger Dijkstra was from the Netherlands

• P comes from the Dutch word proberen (to test)
• V comes from the Dutch word verhogen (to increment)

• Better names than the alternatives
• decrement_or_if_value_is_zero_block_then_decrement_after_waking
• increment_and_wake_a_waiting_process_if_any

Binary Semaphore (aka mutex)
• A binary semaphore is a semaphore whose value is always

0 or 1
• Used for mutual exclusion---it's a more efficient lock!

sem_t s
init(&s, 1)

P(&s)
CriticalSection()
V(&s)

P(&s)
CriticalSection()
V(&s)

Unsafe region

Critical section wrt cnt

Critical
section
wrt
cnt

Example: Shared counter

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe
trajectory

Safe trajectory
/* Thread routine */
void *thread(void *vargp)
{

long niters = *((long *)vargp);

long i;
for (i = 0; i < niters; i++){

cnt++;

}

return NULL;
}

volatile long cnt = 0;

Example: Shared counter

/* Thread routine */
void *thread(void *vargp)
{

long niters = *((long *)vargp);

long i;
for (i = 0; i < niters; i++){

P(&s)
cnt++;
V(&s)

}

return NULL;
}

volatile long cnt = 0;
sem_t s;

sem_init(&s, 1);

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1

Exercise 1: Semaphores
• What would be the value in the semaphore at the four bad points?

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Forbidden region

1

0
-1 -1 -1 -1

1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

/* Thread routine */
void *thread(void *vargp)
{

long niters = *((long *)vargp);

long i;
for (i = 0; i < niters; i++){

P(&s)
cnt++;
V(&s)

}

return NULL;
}

volatile long cnt = 0;
sem_t s;

sem_init(&s, 1);

Example: Synchronization Barrier
• With data parallel programming,

a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.
• MapReduce is an example of

this!

• To do this safely, we need a
way to check whether all n
threads have completed.

void *thread(void *args){
parallel_computation(args);

use_results();
}

volatile int results = 0;
volatile int done_count = 0;
sem_t count_mutex;
sem_init(&count_mutex, 1)

P(&count_mutex);

V(&count_mutex);

sem_t barrier;
sem_init(&barrier, 0)

if(done_count == n){
V(&barrier);

}

done_count++;

P(&barrier);
V(&barrier);

Counting Semaphores
• A semaphore with a value that goes above 1 is called a

counting semaphore
• Provide a more flexible primitive for mediating access to

shared resources

Example: Bounded Buffers

finite capacity (e.g. 20 loaves)
implemented as a queue

Threads A: produce loaves of bread and put
them in the queue

Threads B: consume loaves by taking them off
the queue

Example: Bounded Buffers

Threads A: produce loaves of bread and put
them in the queue

Threads B: consume loaves by taking them off
the queue

Separation of concerns:
1. How do you implement a bounded buffer?
2. How do you synchronize concurrent access to a
bounded buffer?

finite capacity (e.g. 20 loaves)
implemented as a queue

3

typedef struct {
int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // (index of last elem)+1 % n, 0 <= rear < n

} bbuf_t

Example: Bounded Buffers
0 1 2 3 4 5 (n = 6)

2 4 1 Values wrap around!!b

frontrear

void init(bbuf_t * ptr, int n){
ptr->b = malloc(n*sizeof(int));
ptr->n = n;
ptr->front = 0;
ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){
ptr->b[ptr->rear]= val;
ptr->rear= ((ptr->rear)+1)%(ptr->n);

}

int get(bbuf_t * ptr){
int val= ptr->b[ptr->front];
ptr->front= ((ptr->front)+1)%(ptr->n);
return val;

}

2

Exercise 2: What can go wrong?

typedef struct {
int *b;
int n;
int front;
int rear;

} bbuf_t

Example: Bounded Buffers

void init(bbuf_t * ptr, int n){
ptr->b = malloc(n*sizeof(int));
ptr->n = n;
ptr->front = 0;
ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){

ptr->b[ptr->rear]= val;
ptr->rear= ((ptr->rear)+1)%(ptr->n);

}

int get(bbuf_t * ptr){

int val= ptr->b[ptr->front];
ptr->front= ((ptr->front)+1)%(ptr->n);

return val;
}

3 4 1b

frontrear

2

sem_t mutex;
sem_t slots;

P(&(ptr->mutex))

V(&(ptr->mutex))

P(&(ptr->slots))

P(&(ptr->mutex))

V(&(ptr->mutex))

P(&(ptr->items))

sem_init(&mutex, 1);
sem_init(&slots, n);
sem_init(&items, 0);

sem_t items;
V(&(ptr->items))

V(&(ptr->slots))

0 1 2 3 4 5 (n = 6)

Exercise 3: Readers/Writers
• Consider a collection of concurrent threads that have access to a shared

object
• Some threads are readers, some threads are writers

• a unlimited number of readers can access the object at same time
• a writer must have exclusive access to the object

int reader(void *shared){

num_readers++;

int x = read(shared);

num_readers--;

return x
}

void writer(void *shared, int val){

write(shared, val);

}

// global variables
int num_readers = 0;

void init(){

}
sem_t num_lock;

sem_init(&num_lock, 1);

P(&num_lock);

V(&num_lock);

P(&num_lock);

V(&num_lock);

sem_t ojb_lock;
sem_init(&ojb_lock, 1);

P(&ojb_lock);

V(&ojb_lock);if(num_readers == 1)
P(&obj_lock);

if(num_readers == 0)
V(&obj_lock);

Programming with Semaphores
C

• Semaphore type:
sem_t

• Initialization:
int sem_init(sem_t* s,

int pshared,
unsigned value)

• P
sem_wait(sem_t * s)

• V
sem_post(sem_t * s)

Python

• Semaphore type:
class Semaphore

• Initialization:
s = Semaphore(value)

• P
s.acquire()

• V
s.release()

Limitations of Semaphores
• semaphores are a very spartan mechanism

• they are simple, and have few features
• more designed for proofs than synchronization

• they lack many practical synchronization features
• it is easy to deadlock with semaphores
• one cannot check the lock without blocking

• strange interactions with OS scheduling (priority
inheritance)

Condition Variables
• A condition variable cv is a stateless synchronization

primitive that is used in combination with locks (mutexes)
• condition variables allow threads to efficiently wait for a change to

the shared state protected by the lock
• a condition variable is comprised of a waitlist

• Interface:
• wait(CV * cv, Lock * lock): Atomically releases the lock, suspends

execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before
wait returns

• signal(CV * cv): takes one thread off of cv's waitlist and marks it as
eligible to run. (No-op if waitlist is empty.)

• broadcast(CV * cv): takes all threads off cv's waitlist and marks
them as eligible to run. (No-op if waitlist is empty.)

Using Condition Variables
1. Add a lock. Each shared value needs a lock to enforce

mutually exclusive access to the shared value.
2. Add code to acquire and release the lock. All code

access the shared value must hold the objects lock.
3. Identify and add condition variables. A good rule of

thumb is to add a condition variable for each situation in
a function must wait for.

4. Add loops to wait. Threads might not be scheduled
immediately after they are eligible to run. Even if a
condition was true when signal/broadcast was called, it
might not be true when a thread resumes execution.

Example: Synchronization Barrier
• With data parallel programming,

a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.
• MapReduce is an example of

this!

• To do this safely, we need a
way to check whether all n
threads have completed.

/* Thread routine */
void *thread(void *args)
{

parallel_computation(args)

done_count++;

use_results();

}

int done_count = 0;
Lock lock;

acquire(&lock);

release(&lock);

CV all_done;

if(done_count < n){
wait(&all_done, &lock);

} else {

}
broadcast(&all_done);

Exercise 4: Readers/Writers
• Consider a collection of concurrent threads that have access to a shared

object
• Some threads are readers, some threads are writers

• a unlimited number of readers can access the object at same time
• a writer must have exclusive access to the object

int reader(void *shared){

num_readers++;

int x = read(shared);

num_readers--;

return x
}

void writer(void *shared, int val){

num_writers=1;

write(shared, val);

num_writers=0;

}

int num_readers = 0;
int num_writers = 0;
Lock lock;

acquire(&lock);

release(&lock);

acquire(&lock);

release(&lock);

CV readable;
CV writeable;

while(num_writers > 0)
wait(readable, &lock);

if(num_readers == 0)
signal(writeable);

acquire(&lock);

release(&lock);

acquire(&lock);

release(&lock);

while(num_readers > 0)
wait(writeable, &lock);

signal(writeable);
broadcast(readable);

Programming with CVs
C

• Initialization:
pthread_mutex_t lock =

PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv =

PTHREAD_COND_INITIALIZER;

• Lock acquire/release:
pthread_mutex_lock(&lock);
pthread_mutex_unlock(&lock);

• CV operations:
pthread_cond_wait(&cv, &lock);
pthread_cond_signal(&cv);
pthread_cond_broadcast(&cv);

Python

• Initialization:
lock = Lock()
cv = Condition(lock)

• Lock acquire/release:
lock.acquire()
lock.release()

• V
cv.wait()
cv.notify()
cv.notify_all()

Exercise 5: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video (including
exercises)?

3. Do you have any particular questions you’d like me to
address in this week’s problem session?

4. Do you have any other comments or feedback?

