
CS 105 Spring 2021

Lecture 20: Virtual Memory (cont'd)

Review: Address Translation

MMU
Virtual Address invalid

Exception
Physical Address

Data

Code
Data

Stack

Heap

Review: Paging

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12
Frame 13
Frame 14
Frame 15
Frame 16
Frame 17

Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7

Review: Virtual Pages

vaddr
NULL page or

access not allowed

SegFault

Data

paddr =

Code
Data

Stack

Heap
MMU

page# offset

Frame[page#] offset
…

v Frame Access
1 47 R,W
0 NULL R,W
0 13 R,W
1 42 R,X

Invalid page

Page Fault

page table

Review: Problems with Paging
• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,
assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two
memory accesses:
• One for the page table
• One for the data/instruction

Traditional Paging

• page table is stored in
physical memory

• implemented as array of
page table entries

• Page Table Base Register
(PTBR) stores physical
address of beginning of
page table

• Page table entries are
accessed by using the
page number as the index
into the page table

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

0 NULL R,W

0 NULL R,W

0 NULL R,W

1 59 R,X

PTBR

Two-level Page Tables

• page table is stored in
virtual memory pages

• page directory is stored in
physical memory (page
table for the page table)

• Implemented as array of
page directory entries

• Page Table Base Register
(PTBR) stores physical
address of beginning of
page directory

0 NULL

1 62

0 17

1 77
PTBR1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

0 NULL R,W

0 NULL R,W

0 NULL R,W

1 59 R,X

Two-level Page Tables

vaddr

Data

MMU

Frame[idx1] offset

…

v PTFrame

0 NULL

1 62

0 17

1 77

page dir

idx1 offsetidx2

v Frame Acc

1 47 R,W

0 NULL R,W

0 13 R,W

1 42 R,X

page table page

Frame[idx1]

…
+ only store in-use page table entries in physical memory
+ easier to allocate page table
- more memory accesses

Exercise 1: Two-level Page Tables
• Assume you are working on an architecture with a 32-bit

virtual address space in which idx1 is 4 bits, idx2 is 12
bits, and offset is 16 bits.

• How big is a page in this architecture?
• How big is a page table entry in this architecture?

4 bit idx1 16 bit offset12 bit idx2

𝟐𝟏𝟔 bytes = 𝟔𝟒 KB
𝟏𝟔 bytes

Exercise 2: Two-level Page Tables
Assume you are still
working on that architecture.

Compute the physical
address corresponding to
each of the virtual address
(or answer "invalid"):

a) 0x00000000
b) 0x20022002
c) 0x10015555

4 bit idx1 16 bit offset12 bit idx2

v PTFrame

1 0x0

1 0x2

0 NULL

0 NULL

page directory
v Frame Acc

1 0x0047 R,W

0 NULL R,W

0 0x0013 R,W

1 0x0042 R,X

page table

…

0x3

0x2

0x1

0x0

0 NULL0xF

0 0x002A R

1 0xCAFE R,W

0 NULL R,W

0 13 R,W

…

0x3

0x2

0x1

0x0

0x0

0x1

0x2

0x3

…

0x00470000
invalid
0xCAFE5555

Frame 0

Frame 1

Frame 2

• Problem: How big does the page directory get?
• Assume you have a 48-bit address space
• Assume you have 4KiB pages
• Assume you have 8 byte page table entries/page directory entries

• Goal: Page Table Directory should fit in one frame
• Multi-level page tables: add additional level(s) to tree

Multi-level Page Tables

27 bit idx1 12 bit offset9 bit idx2

48 bits

12 bit offset9 bit idx4

48 bits

9 bit idx39 bit idx1 9 bit idx2

128 MB

Review: Problems with Paging
• Memory Consumption: page table is really big

• Example: consider 64-bit address space, 4KB (2^12) page size,
assume each page table entry is 8 bytes.

• Larger pages increase internal fragmentation

• Performance: every data/instruction access requires two
memory accesses:
• One for the page table
• One for the data/instruction

five

each of the four levels of page table

Translation-Lookaside Buffer (TLB)
• General idea: if address translation is slow, cache some

of the answers
• Translation-lookaside buffer is an address translation

cache that is built into the MMU

Exercise 3: TLB

• Assume you are running on an architecture with a one-
level page table with 4096 byte pages. For each of the
following virtual addresses, determine whether the
address translation is stored in the TLB. If so, give the
corresponding physical address
• 0x7E37C
• 0x16A48

TLB
idx v tag PPN v tag PPN v tag PPN v tag PPN
0 1 03 B 0 07 6 1 28 3 0 01 F

1 1 31 0 0 12 3 1 3E 4 1 0B 1

2 0 2A A 0 11 1 1 1F 8 1 07 5

3 1 07 3 0 2A A 0 1E 2 0 21 B

Exercise 3: TLB

• Assume you are running on an architecture with a one-
level page table with 4096 byte pages. For each of the
following virtual addresses, determine whether the
address translation is stored in the TLB. If so, give the
corresponding physical address
• 0x7E37C
• 0x16A48

TLB
idx v tag PPN v tag PPN v tag PPN v tag PPN
0 1 03 B 0 07 6 1 28 3 0 01 F

1 1 31 0 0 12 3 1 3E 4 1 0B 1

2 0 2A A 0 11 1 1 1F 8 1 07 5

3 1 07 3 0 2A A 0 1E 2 0 21 B

011111 10

000101 10

0x837C
TLB miss

Example: The Linux x86 Address Space
• Use "only" 48-bit addresses (top

16 bits not used)
• 4KiB pages by default

• supports larger "superpages"
• Four-level page table
• Physical memory stores

memory pages, memory-
mapped files, cached file pages

• Updates are periodically written
to disk by background
processes

• Page eviction algorithm uses
variant of LRU called 2Q
• approximates LRU with clock
• maintains two lists (active/inactive)

• Stack is marked non-executable
• Virtual address of stack/heap

start are randomized each time
process is initialized

Code
Data

Stack

Heap

Page 0: Invalid

0x800000000000
Kernel (logical)

Kernel (virtual)

0x000000000000

0xFFFFFFFFFFFF

Example: Core i7 Address Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address
(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video (including
exercises)?

3. Do you have any particular questions you’d like me to
address in this week’s problem session?

4. Do you have any other comments or feedback?

