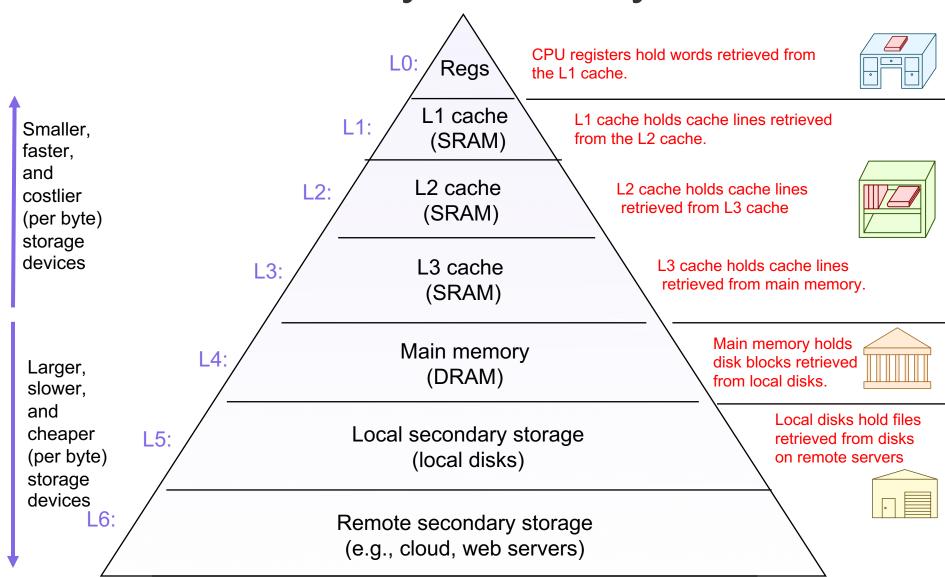
Lecture 16: Optimization with Caches

CS 105 Spring 2021

Review: Memory Hierarchy

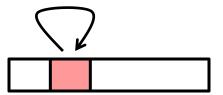


Review: Principle of Locality

Programs tend to use data and instructions with addresses near or equal to those they have used recently

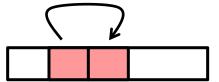
Temporal locality:

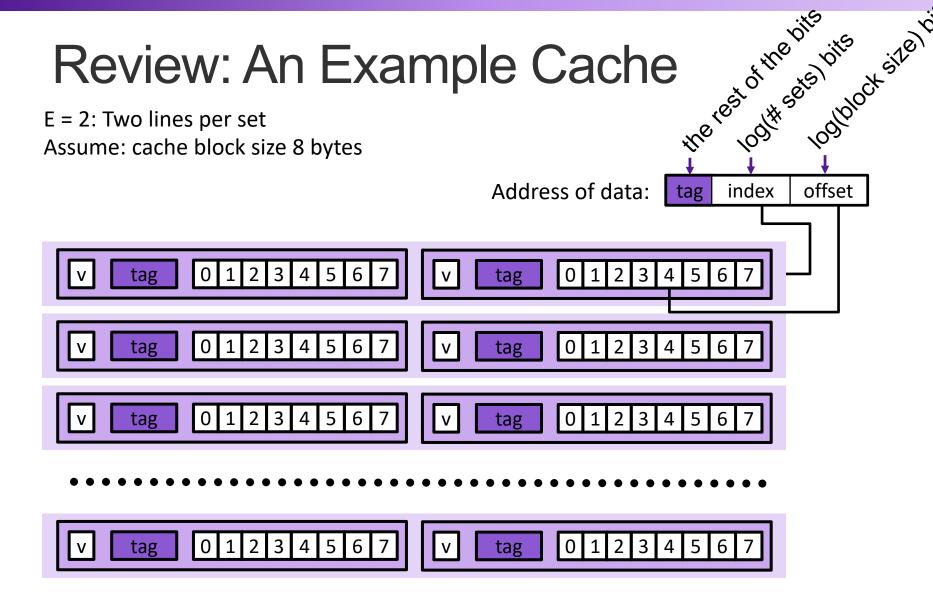
 Recently referenced items are likely to be referenced again in the near future



Spatial locality:

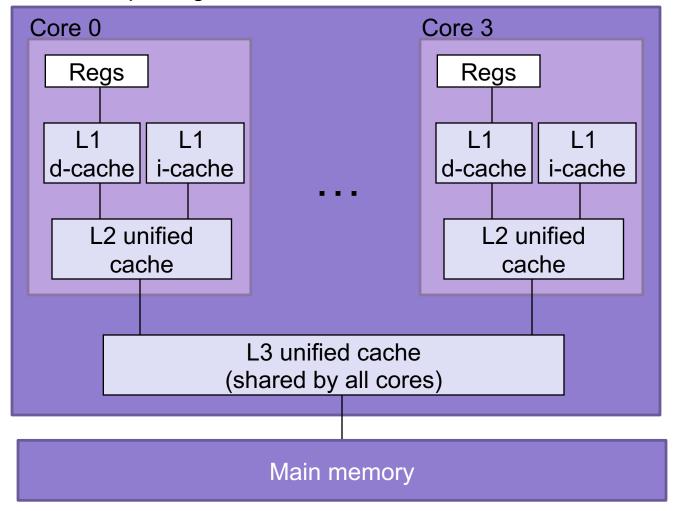
 Items with nearby addresses tend to be referenced close together in time





Typical Intel Core i7 Hierarchy

Processor package



L1 i-cache and d-cache: 32 KB, 8-way, Access: 4 cycles

L2 unified cache: 256 KB, 8-way, Access: 10 cycles

L3 unified cache: 8 MB, 16-way, Access: 40-75 cycles

Block size: 64 bytes for all caches.

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
- Typically 3-10% for L1
- can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typically 4 clock cycles for L1, 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Memory Performance with Caching

- Read throughput (aka read bandwidth): Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

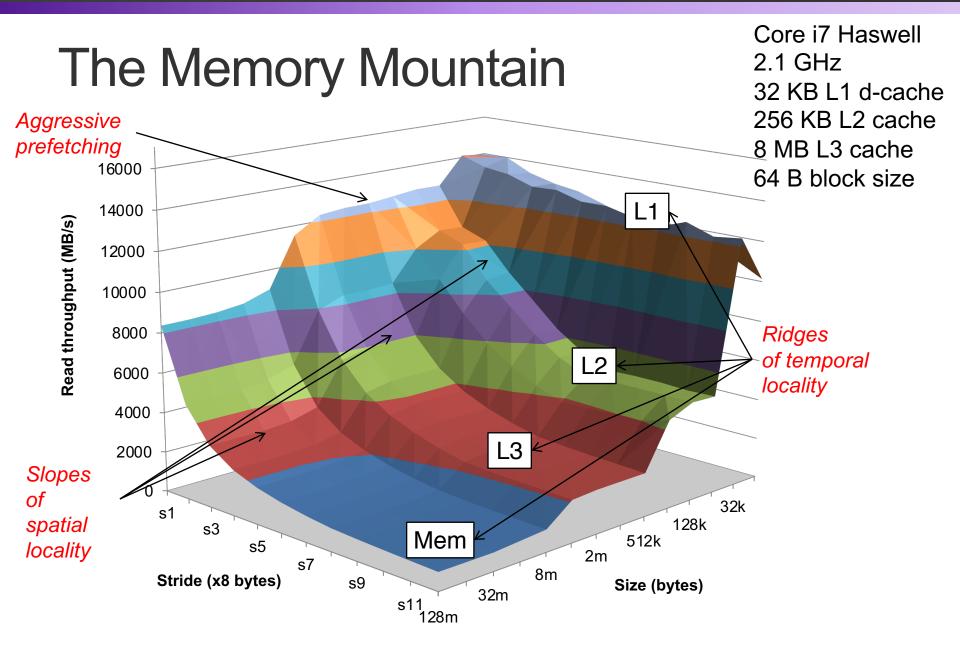
Memory Mountain Test Function

Call test() with many
combinations of elems
and stride.

For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test()
 again and measure
 the read
 throughput(MB/s)

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
          array "data" with stride of "stride", using
          using 4x4 loop unrolling.
*
*/
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;
   /* Combine 4 elements at a time */
   for (i = 0; i < limit; i += sx4) {
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3]:
    /* Finish any remaining elements */
    for (; i < length; i++) {</pre>
        acc0 = acc0 + data[i]:
    return ((acc0 + acc1) + (acc2 + acc3));
```



Exercise 1: Locality

 Which of the following functions is better in terms of locality with respect to array src?

Exercise 1: Locality

 Which of the following functions is better in terms of locality with respect to array src?

4.3ms

81.8ms

2.0 GHz Intel Core i7 Haswell

Writing Cache-Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

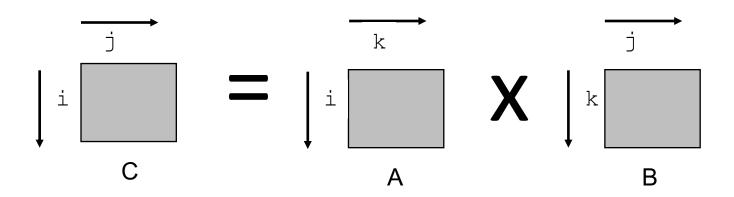
Example: Matrix Multiplication

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- O(N³) total operations
- N reads per source element
- N values summed per destination

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) {
        sum += a[i][k] * b[k][j];
    }
    c[i][j] = sum;
}</pre>
```

Miss Rate Analysis for Matrix Multiply

- Assume:
 - Block size = 32B (big enough for four doubles)
 - Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
 - Cache is not even big enough to hold multiple rows
- Analysis Method:
 - Look at access pattern of inner loop



Layout of C Arrays in Memory (review)

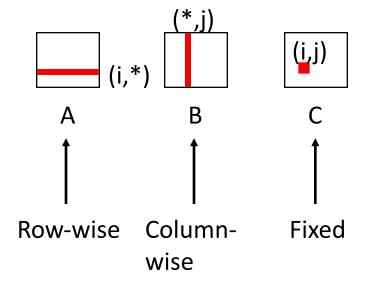
- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:
 - accesses successive elements
 - if data block size (B) > sizeof(a_{ii}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ii}) / B
- Stepping through rows in one column:
 - accesses distant elements
 - no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

(jik is similar)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum;
}
}</pre>
```

Inner loop:



Misses per inner loop iteration:

<u>A</u> <u>B</u> 0.25 1.0

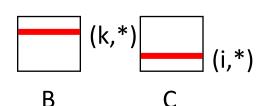
2 loads, no stores per inner loop iteration

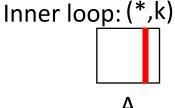
Exercise 2: Matrix Multiplication

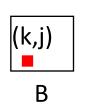
```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
}</pre>
```

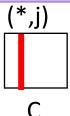
```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}</pre>
```

Inner loop:









Exercise 2: Matrix Multiplication

```
/* kij */
for (k=0; k< n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j< n; j++)
      c[i][j] += r * b[k][j];
```

```
/* jki */
for (j=0; j< n; j++) {
  for (k=0; k< n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
```

Inner loop:

(i,k)

(k,*)

Inner loop: (*,k)

(k,j) В

(*,j)

2 loads, 1 store per inner loop iteration 2 loads, 1 store per inner loop iteration

Misses per inner loop iteration:

Α 0.0

B 0.25

Misses per inner loop iteration:

0.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j< n; j++) {
   sum = 0.0;
   for (k=0; k< n; k++)
     sum += a[i][k] * b[k][j];
   c[i][j] = sum;
for (k=0; k< n; k++) {
 for (i=0; i<n; i++) {
  r = a[i][k];
  for (j=0; j< n; j++)
   c[i][j] += r * b[k][j];
for (j=0; j< n; j++) {
 for (k=0; k< n; k++) {
   r = b[k][j];
   for (i=0; i< n; i++)
    c[i][j] += a[i][k] * r;
```

```
ijk (& jik):
```

- 2 loads, 0 stores
- misses/iter = 1.25

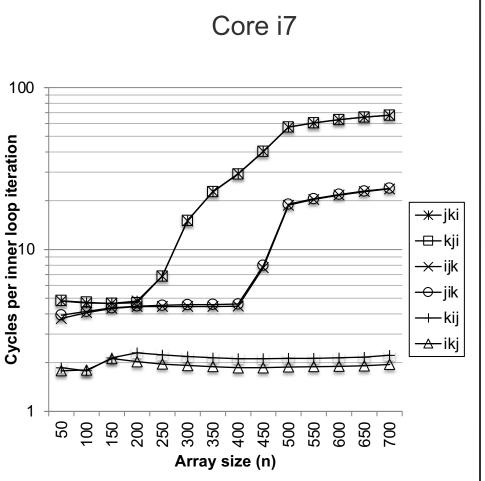
kij (& ikj):

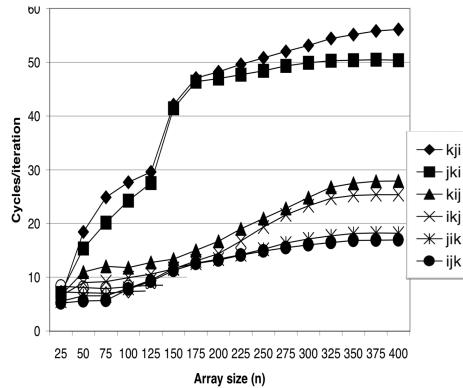
- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):

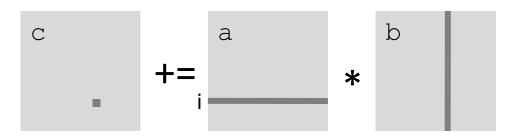
- 2 loads, 1 store
- misses/iter = 2.0

Matrix Multiply Performance





Can we do better?

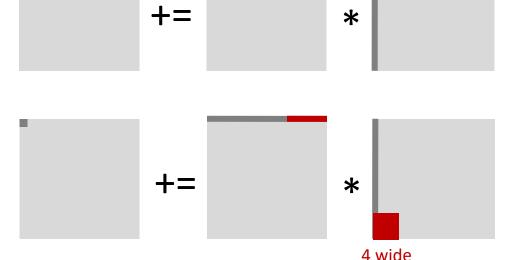


n

Cache Miss Analysis

- Assume:
 - Matrix elements are doubles
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)
- First iteration:
 - n/4 + n = 5n/4 misses

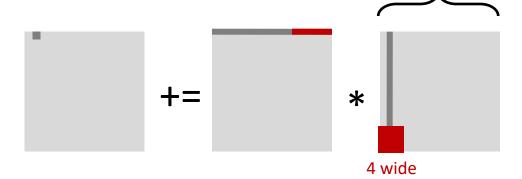
 Afterwards in cache: (schematic)



n

Cache Miss Analysis

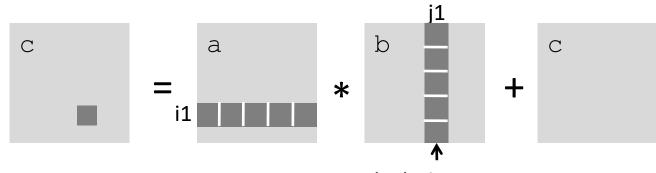
- Assume:
 - Matrix elements are doubles
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)
- Second iteration:
 - n/4 + n = 5n/4 misses



- Total misses:
 - $5n/4 * n^2 = (5/4) * n^3$

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
       for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)
                              c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
```



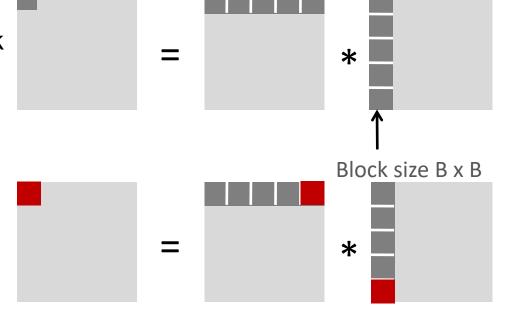
Block size B x B

n/B blocks

Cache Miss Analysis

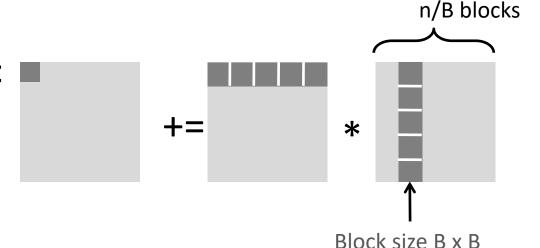
- Assume:
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: 3B² < C
- First (block) iteration:
 - B²/4 misses for each block
 - $2n/B * B^2/4 = nB/2$ (omitting matrix c)

 Afterwards in cache (schematic)



Cache Miss Analysis

- Assume:
 - Cache block = 4 doubles
 - Cache size C << n (much smaller than n)
 - Three blocks fit into cache: 3B² < C
- Second (block) iteration:
 - Same as first iteration
 - $2n/B * B^2/4 = nB/2$



- Total misses:
 - $nB/2 * (n/B)^2 = n^3/(2B)$

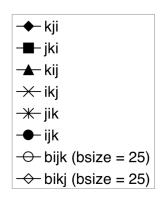
Blocking Summary

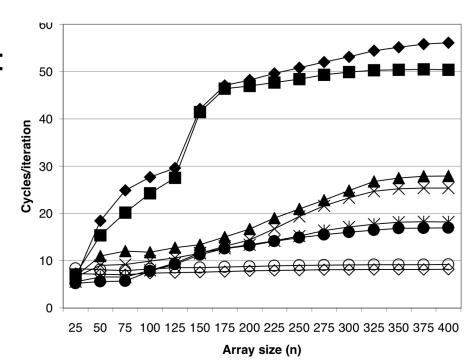
- No blocking: (5/4) * n³
- Blocking: n³ / (2B)
- Suggest largest possible block size B, but limit 3B² < C!
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

A reality check

- This analysis only holds on some machines!
- Intel Core i7 does aggressive pre-fetching for one-stride programs, so blocking doesn't actually improve performance

But on a Pentium III Xeon:





And that's the end of Part 1

Exercise 3: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have any questions that you would like me to address in this week's problem session?
- 4. Do you have any other comments or feedback?