
CS 105

Lecture 3: Representing Signed Integers

Memory: A (very large) array of bytes
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Base-2 Integers (aka Binary Numbers)
128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

Representing Signed Integers
• Option 1: sign-magnitude

• One bit for sign; interpret rest as magnitude

4

+/- 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

-

Representing Signed Integers
• Option 2: excess-K

• Choose a positive K in the middle of the unsigned range
• SignedValue(w) = UnsignedValue(w) – K

5

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20) -128

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 1

Representing Signed Integers
• Option 3: two’s complement

• Most commonly used
• Like unsigned, except the high-order contribution is negative
• 𝑆𝑖𝑔𝑛𝑒𝑑 𝑥 = −𝑥*+, ⋅ 2*+, + ∑123*+4 𝑥1 ⋅ 21

6

-128 (-26) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1

Example: Three-bit integers

8
CS 105, Computer Systems Pomona College

Example: Three-bit integers

unsigned signed
111 7
110 6
101 5
100 4
011 3 011
010 2 010
001 1 001
000 0 000

�1 111
�2 110
�3 101
�4 100

• The high-order bit is the sign bit.

• The largest unsigned value is
11 . . . 1, UMax.

• The signed value for �1 is always
11 . . . 1.

• Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

15

Important Signed Numbers

8 16 32 64
TMax 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF

TMin 0x80 0x8000 0x80000000 0x8000000000000000

0 0x00 0x0000 0x00000000 0x0000000000000000

-1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

Exercise 1: Signed Integers
Assume an 8 bit (1 byte) signed integer representation:

• What is the binary representation for 47?
• What is the binary representation for -47?
• What is the number represented by 10000110?
• What is the number represented by 00100101?

10

Exercise 1: Signed Integers
Assume an 8 bit (1 byte) signed integer representation:

• What is the binary representation for 47?
• What is the binary representation for -47?
• What is the number represented by 10000110?
• What is the number represented by 00100101?

11

00101111

-122
11010001

37

Casting between Numeric Types
• Casting from shorter to longer types preserves the value

• Casting from longer to shorter types drops the high-order
bits

• Casting between signed/unsigned types preserves the
bits (it just changes the interpretation)

• Implicit casting occurs in assignments and parameter
lists. In mixed expressions, signed values are implicitly
cast to unsigned

• Source of many errors!

Exercise 2: Casting
• Assume you have a machine with 6-bit integers/3-bit shorts
• Assume variables: int x = -17; short sy = -3;
• Complete the following table

Expression Decimal Binary
x -17
sy -3

(unsigned int) x
(int) sy

(short) x

Exercise 2: Casting
• Assume you have a machine with 6-bit integers/3-bit shorts
• Assume variables: int x = -17; short sy = -3;
• Complete the following table

Expression Decimal Binary
x -17
sy -3

(unsigned int) x
(int) sy

(short) x

101111
101

10111147
-3 111101

111-1

When to Use Unsigned

15

• Rarely
• When doing multi-precision arithmetic, or when you need

an extra bit of range … but be careful!

unsigned i;
for (i = cnt-2; i >= 0; i--){

a[i] += a[i+1];
}

Arithmetic Logic Unit (ALU)
• circuit that performs bitwise operations and arithmetic on

integer binary types

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

• Shift operators <<, >>
• Left shift fills with zeros
• For signed integers, right shift is arithmetic (fills with high-order bit)

17

Exercise 3: Bitwise vs Logical Operations
• Assume signed char data type (one byte)

• ~(-30)
• !(-30)

• 120 & 85
• 120 | 85
• 120 && 85
• 120 || 85

• -106 << 4
• -106 << 2
• -106 >> 4
• -106 >> 2

18

Exercise 3: Bitwise vs Logical Operations
• Assume signed char data type (one byte)

• ~(-30)
• !(-30)

• 120 & 85
• 120 | 85
• 120 && 85
• 120 || 85

• -106 << 4
• -106 << 2
• -106 >> 4
• -106 >> 2

19

= ~11100010 = 00011101 = 29
= !11100010 = 00000000 = 0

= 01111000 & 01010101 = 01010000 = 80
= 01111000 | 01010101 = 01111101 = 125
= 01111000 && 01010101 = 00000001 = 1
= 01111000 || 01010101 = 00000001 = 1

= 10010110 << 4 = 01100000 = 96
= 10010110 << 2 = 01011000 = 88
= 10010110 >> 4 = 11111001 = -7
= 10010110 >> 2 = 11100101 = -27

Addition Example
• Compute 5 + -3 assuming all ints are stored as four-bit

signed values

Exactly the same as unsigned numbers!

0 1 0 1
+ 1 1 0 1

0 1 0 0

1

… but with different error cases

= 2 (Base-10)

1

Addition/Subtraction with Overflow
• Compute 5 + 3 assuming all ints are stored as four-bit

signed values

0 1 0 1
+ 0 0 1 1

0 0 0 1

1

= -8 (Base-10)

1 1

Error Cases
• Assume 𝑤-bit signed values

• 𝑥 +*6 𝑦 = 8
𝑥 + 𝑦 − 2* (positive overBlow)
𝑥 + 𝑦 (normal)
𝑥 + 𝑦 + 2* (negative overBlow)

• overflow has occurred iff 𝑥 > 0 and y > 0 and 𝑥 +*6 𝑦 < 0
or 𝑥 < 0 and y < 0 and 𝑥 +*6 𝑦 > 0

0 2*+, 2 ⋅ 2*+,

[)
representable values

()Possible values of 𝑥 + 𝑦

−2*+,−2 ⋅ 2*+,

Exercise 4: Binary Addition
• Given the following 5-bit signed values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?
00010 00101

01100 00100

10100 10001

Exercise 4: Binary Addition
• Given the following 5-bit signed values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?
00010 00101

01100 00100

10100 10001

00111

10000

00101

no
yes
yes

+ _

Multiplication Example
• Compute 3 x 2 assuming all ints are stored as four-bit

signed values

Exactly like unsigned multiplication!

0 0 1 1
x 0 0 1 0

… except with different error cases

= 6 (Base-10)

0 0 0 0
0 0 1 1 0

0 1 1 0

Multiplication Example
• Compute 5 x 2 assuming all ints are stored as four-bit

signed values
0 1 0 1

x 0 0 1 0

= -6 (Base-10)

0 0 0 0
0 1 0 1 0+ _

1 0 1 0

Error Cases
• Assume 𝑤-bit unsigned values

• 𝑥 ∗*6 𝑦 = 𝑈2𝑇(𝑥 ⋅ 𝑦 mod 2*)

Possible values of 𝑥 ∗ 𝑦

0 2*+, 24(*+,)

[)
representable values

[)

−2*+,−24(*+,)

Exercise 5: Binary Multiplication
• Given the following 3-bit signed values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?
100 101

010 011

111 010

Exercise 5: Binary Multiplication
• Given the following 3-bit signed values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?
100 101

010 011

111 010

100

110

110

yes
yes
no

Exercise 6: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have any particular questions you’d like me to
address in the problem session?

4. Do you have any other comments or feedback?

