Lecture 2: Representing Integers

CS 105

Abstraction

Memory: A (very large) array of bytes

. bytes
- Memory is an array of-bie~

- A byte is a unit of eight bits

- An index into the array is an address,
location, or pointer

- Often expressed in hexadecimal

- We speak of the value in memory at
an address

- The value may be a single byte ...

- ... or a multi-byte quantity starting
at that address

00110111

11010001

01010011

01101100

Representing Integers

- Arabic Numerals: 47

- Roman Numerals: XLVII
- Brahmi Numerals: H9)
- Tally Marks: W Wt W T L W I I 1

Base-10 Integers

100 (102) 10 (107) 1 (109

1000 (103)

Storing bits

- Static random access memory (SRAM):
stores each bit of data in a flip-flop, a
circuit with two stable states

- Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

- Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

- Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

- Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Base-2 Integers (aka Binary Numbers)

128 (27) 64 (2) 32(25) 16(24) 8(23) 4(22) 2(2Y

%ﬁiﬁ R

1 (29

Binary Numbers

- Decimal (Base-10):

4211
=4-1034+2-10*4+1-10*+1-10°
= 4211
- Binary (Base-2):
1011

=1-2340-224+1-214+1.20
=11

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the
(base-10) integer interpretation of these values?

1. 0001
2. 1010
3. 0111
4. 1111

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the
(base-10) integer interpretation of these values?
1. 0001 =0-23+0-2240-2"+1-2°=1
2. 1010 =1-2340-22+4+1-2140-2°=8+2=10
3. 0111 =0-23+1-2241-2'41-2=442+1=7
4. 1MM11 =1-234+1-2241-2'+1-2°=8+4+2+1=15

Binary Numbers

ON A SCALE OF 1o 10,
HOW LIKELY IS IT THAT
THIS QUESTION 1S
USING BINARY?

(u?
)

\«MA\TSAL{?

There are

10 types

of people
in the world:

Those who
understand binary,
and those
who don’t.

Exercise 2: Binary Number Range

- What are the max number and min number that can be
represented by a w-bit binary number?

1. w=3
2. w=4

3. w=8

Exercise 2: Binary Number Range

- What are the max number and min number that can be
represented by a w-bit binary number?

1. W=3 min = 000, = 04, max = 111, =22 + 21 +29 =7,
2. W = 4 min = 00002 == 010 max = 11112 == 23 —+ 22 —+ 21 + 20 = 1510

3. w=8 min = 00000000, = 049y max = 11111111, = 27 426 4 25 4 24
+2° + 22+ 21 +2°
- 25510

Unsigned Integers in C

C Data Type Size (bytes)

unsigned char

1

unsigned short

unsigned int

unsigned long

|~ DN

ASCII characters

mmmmmla

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000

© 00 N O o0 A W DN

50
51
52
53
54
55
56
S
58
59
60
61
62
63
64

00110001
00110010
00110011
00110100
00110101
00110110
00110111

00111000
00111001
00111010
00111011

00111100
00111101

00111110
00111111

01000000

I GO M m O O W

T O Z2 &= r XN «

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000

N < X S < Cc 4 »m

> d — —

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

01010001
01010010
01010011
01010100
01010101
01010110
01010111

01011000
01011001
01011010
01011011

01011100
01011101

01011110
01011111

01100000

-~ d® O O O

= (o]

98

&9

100
101
102
103
104
105
106
107
108
109
110
111

112

011
011
011(
011
011
011(
011(
011
011
011
011(
011(
011(
011(
011¢
0111

Hexidecimal Numbers

OOlO}lOO 00110101)00110000

11100001

2 C 3 5 3 0

0x2c3530el

Y
e

1

| Dec_| Hex_
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 a
11 b
12 c
13 d
14 e
15 f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the
representation of each value in (1) binary and (2) decimal?
1. OxOa
2. 0Ox11
3. Ox2f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the
representation of each value in (1) binary and (2) decimal?
1. O0x0a =00001010, =10,
2. Ox11 =00010001, =174,
3. Ox2f =00101111, =47,

Endianness

47 vs 74

BIC ENDIAN - The way
prcple alwayx broke
thelir egue in the
Lilliiput land

LITTLE ENDIAN - The
way the king then
ordered the pecple to
break their egge

Endianness

- Big Endian: low-order bits go on the right (47)

- | tend to think in big endian numbers, so examples in class will
generally use this representation

- Networks generally use big endian (aka network byte order)

- Little Endian: low-order bits go on the left (74)

- Most modern machines use this representation

- | will try to always be clear about whether I'm using a big
endian or little endian representation

- When in doubt, ask!

Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on
integer binary types

Integer Integer
Operand Operand

v v

A \/ B
Status
Status
Opcode Y

Integer
Result

Bitwise vs Logical Operations in C

- Bitwise Operators &, |, ~, A
- View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, |, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return 0 or 1
- Early termination

- Shift operators <<, >>

- Left shift fills with zeros
- For unsigned integers, right shift is logical (fills with zeros)

Exercise 4: Bitwise vs Logical Operations

Assume unsigned char data type (one byte). What do each
of the following expressions evaluate to (interpreted as
unsigned integers and expressed base-10)?

1.
. 1226

N

S U1 B~ W

~2260

. 120 & 85
. 120 | 85
. 120 && 85
. 120 11 85

7. 81 << 4
8. 81 << 2
9. 81 >> 4
10.81 >> 2

Exercise 4: Bitwise vs Logical Operations

Assume unsigned char data type (one byte). What do each
of the following expressions evaluate to (interpreted as
unsigned integers and expressed base-10)?

1. ~226
. 1226

N

. 120 & 85
120 | 85
. 120 && 85
. 120 11 85

S U1 B~ W

7. 81 << 4
8. 81 << 2
9. 81 >> 4
10.81 >> 2

= ~11100010 =

111100010 =

= 01111000 &
= 01111000 |
= 01111000 &&

01111000 ||

= 01010001 <<
= 01010001 <<

01010001 >>
01010001 >>

00011101 = 29
00000000 = @

01010101 = 01010000
01010101 = 01111101
01010101 = 00000001

01010101 = 00000001

N NP

= 00010000

01000100
00000101
00010100

= 160

03
5
20

Example: Using Bitwise Operations

ex & 1 “x is odd”
*(x + 7) & OXFFFFFFF8 “round up to a multiple of 8”
X << 2 "multiply by 4"

Addition Example

- Compute 5 + 6 assuming all ints are stored as eight-bit (1
byte) unsigned values

1
oOoooO00O101

+oo0000110
O0O0OO0O1 011 =11 (Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

Addition Example with Overflow

- Compute 200 + 100 assuming all ints are stored as eight-
bit (1 byte) unsigned values

11
11001000

+ 01100100
OO010O1 10O =44 (Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

- Assume w-bit unsigned values

[Je
o
O

(O

representable values

1 D

Possible values of x + y

x+y (normal)

° u ju—
X twy {x + y — 2% (overflow)

- overflow has occurred iff x +, vy < x

Exercise 5: Binary Addition

- Given the following 5-bit unsigned values, compute their
sum and indicate whether or not an overflow occurred

x|y | xty loverflow?

00010 00101
01100 00100
10100 10001

Exercise 5: Binary Addition

- Given the following 5-bit unsigned values, compute their
sum and indicate whether or not an overflow occurred

x|y | xiy | overflow?

00010 00101 00111
01100 00100 10000 no
10100 10001 00101 yes

Multiplication Example

- Compute 5 x 6 assuming all ints are stored as eight-bit (1
byte) unsigned values

Oo0o0OO0O0O101
Xo00000110

OO00OOOOOO

OO00O0O0O101
+00000101

OO0O0O11110 =30(Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

Addition Example

- Compute 200 x 3 assuming all ints are stored as eight-bit
(1 byte) unsigned values

11001000
Xo00000011

11001000
+ 11001000

O1 011000 =88(Base-10)

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

- Assume w-bit unsigned values

0 2% 2w . 2W

O O o
)

representable values

— D

Possible values of x %y

- x *X vy = (x-vy)mod 2%

Exercise 6: Binary Multiplication

- Given the following 3-bit unsigned values, compute their
product and indicate whether or not an overflow occurred

x|y | xy loverflow?
100

101
010 011
111 010

Exercise 6: Binary Multiplication

- Given the following 3-bit unsigned values, compute their
product and indicate whether or not an overflow occurred

x|y | xty |overflow?
100 101 100 yes
010 011 110 no

111 010 110 yes

Multiplying with Shifts

- Multiplication is slow

- Bit shifting is kind of like multiplication, and is often faster
- X*8=x<<3
e X*10=x<<3+x<<1

- Most compilers will automatically replace multiplications
with shifts where possible

Exercise 7: Feedback

1.

N

Rate how well you think this recorded lecture worked

Better than an in-person class

About as well as an in-person class

Less well than an in-person class, but you still learned something
Total waste of time, you didn't learn anything

How much time did you spend on this video lecture
(including time spent on exercises)?

Do you have any particular questions you'd like me to
address in this week's problem session?

Do you have any comments or feedback?

