
CS 105

Lecture 2: Representing Integers

Abstraction

Memory: A (very large) array of bytes
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

Representing Integers
• Arabic Numerals: 47
• Roman Numerals: XLVII
• Brahmi Numerals:
• Tally Marks: IIII IIII IIII IIII IIII IIII IIII IIII IIII II

Base-10 Integers
1000 (103) 100 (102) 10 (101) 1 (100)

0 0 0 5

0 0 4 7

1 8 8 7

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Base-2 Integers (aka Binary Numbers)
128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

Binary Numbers
• Decimal (Base-10):

• Binary (Base-2):

4211
= 4 ⋅ 10& + 2 ⋅ 10) + 1 ⋅ 10* + 1 ⋅ 10+

= 4211

1011
= 1 ⋅ 2& + 0 ⋅ 2) + 1 ⋅ 2* + 1 ⋅ 2+

= 11

Exercise 1: Binary Numbers
• Consider the following four-bit binary values. What is the

(base-10) integer interpretation of these values?
1. 0001
2. 1010
3. 0111
4. 1111

Exercise 1: Binary Numbers
• Consider the following four-bit binary values. What is the

(base-10) integer interpretation of these values?
1. 0001
2. 1010
3. 0111
4. 1111

= 0 ⋅ 2& + 0 ⋅ 2) + 0 ⋅ 2* + 1 ⋅ 2+ = 1
= 1 ⋅ 2& + 0 ⋅ 2) + 1 ⋅ 2* + 0 ⋅ 2+ = 8 + 2 = 10
= 0 ⋅ 2& + 1 ⋅ 2) + 1 ⋅ 2* + 1 ⋅ 2+ = 4 + 2 + 1 = 7
= 1 ⋅ 2& + 1 ⋅ 2) + 1 ⋅ 2* + 1 ⋅ 2+ = 8 + 4 + 2 + 1 = 15

Binary Numbers

Exercise 2: Binary Number Range
• What are the max number and min number that can be

represented by a w-bit binary number?

1. w = 3

2. w = 4

3. w = 8

12

Exercise 2: Binary Number Range
• What are the max number and min number that can be

represented by a w-bit binary number?

1. w = 3

2. w = 4

3. w = 8

13

max = 111) = 2) + 2* + 2+ = 7*+min = 000) = 0*+

max = 1111) = 2& + 2) + 2* + 2+ = 15*+min = 0000) = 0*+

= 11111111) = 24 + 25 + 26 + 27

+2& + 2) + 2* + 2+
= 255*+

min = 00000000) = 0*+ max

Unsigned Integers in C

C Data Type Size (bytes)

unsigned char 1

unsigned short 2

unsigned int 4

unsigned long 8

ASCII characters
Char Dec Binary

! 33 00100001

" 34 00100010

35 00100011

$ 36 00100100

% 37 00100101

& 38 00100110

' 39 00100111

(40 00101000

) 41 00101001

* 42 00101010

+ 43 00101011

, 44 00101100

- 45 00101101

. 46 00101110

/ 47 00101111

0 48 00110000

Char Dec Binary

1 49 00110001

2 50 00110010

3 51 00110011

4 52 00110100

5 53 00110101

6 54 00110110

7 55 00110111

8 56 00111000

9 57 00111001

: 58 00111010

; 59 00111011

< 60 00111100

= 61 00111101

> 62 00111110

? 63 00111111

@ 64 01000000

Char Dec Binary

A 65 01000001

B 66 01000010

C 67 01000011

D 68 01000100

E 69 01000101

F 70 01000110

G 71 01000111

H 72 01001000

I 73 01001001

J 74 01001010

K 75 01001011

L 76 01001100

M 77 01001101

N 78 01001110

O 79 01001111

P 80 01010000

Char Dec Binary

Q 81 01010001

R 82 01010010

S 83 01010011

T 84 01010100

U 85 01010101

V 86 01010110

W 87 01010111

X 88 01011000

Y 89 01011001

Z 90 01011010

[91 01011011

\ 92 01011100

] 93 01011101

^ 94 01011110

_ 95 01011111

` 96 01100000

Char Dec Binary

a 97 01100001

b 98 01100010

c 99 01100011

d 100 01100100

e 101 01100101

f 102 01100110

g 103 01100111

h 104 01101000

i 105 01101001

j 106 01101010

k 107 01101011

l 108 01101100

m 109 01101101

n 110 01101110

o 111 01101111

p 112 01110000

Hexidecimal Numbers

00101100 00110101 00110000 11100001 Dec Hex

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

2 c 3 5 3 0 e 1

0x2c3530e1

Exercise 3: Hexidecimal Numbers
• Consider the following hexidecimal values. What is the

representation of each value in (1) binary and (2) decimal?
1. 0x0a
2. 0x11
3. 0x2f

Exercise 3: Hexidecimal Numbers
• Consider the following hexidecimal values. What is the

representation of each value in (1) binary and (2) decimal?
1. 0x0a
2. 0x11
3. 0x2f

= 00001010) = 10*+
= 00010001) = 17*+
= 00101111) = 47*+

Endianness

47 vs 74

Endianness
• Big Endian: low-order bits go on the right (47)

• I tend to think in big endian numbers, so examples in class will
generally use this representation

• Networks generally use big endian (aka network byte order)
• Little Endian: low-order bits go on the left (74)

• Most modern machines use this representation

• I will try to always be clear about whether I'm using a big
endian or little endian representation

• When in doubt, ask!

Arithmetic Logic Unit (ALU)
• circuit that performs bitwise operations and arithmetic on

integer binary types

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

• Shift operators <<, >>
• Left shift fills with zeros
• For unsigned integers, right shift is logical (fills with zeros)

22

Exercise 4: Bitwise vs Logical Operations
Assume unsigned char data type (one byte). What do each
of the following expressions evaluate to (interpreted as
unsigned integers and expressed base-10)?

1. ~226
2. !226

3. 120 & 85
4. 120 | 85
5. 120 && 85
6. 120 || 85

7. 81 << 4
8. 81 << 2
9. 81 >> 4
10.81 >> 2

23

Exercise 4: Bitwise vs Logical Operations
Assume unsigned char data type (one byte). What do each
of the following expressions evaluate to (interpreted as
unsigned integers and expressed base-10)?

1. ~226
2. !226

3. 120 & 85
4. 120 | 85
5. 120 && 85
6. 120 || 85

7. 81 << 4
8. 81 << 2
9. 81 >> 4
10.81 >> 2

24

= ~11100010
= !11100010 = 00000000 = 0

= 01111000 & 01010101
= 01111000 | 01010101 = 01111101 = 125
= 01111000 && 01010101 = 00000001 = 1
= 01111000 || 01010101 = 00000001 = 1

= 01010001 << 4
= 01010001 << 2 = 01000100 = 68
= 01010001 >> 4 = 00000101 = 5
= 01010001 >> 2 = 00010100 = 20

= 00011101

= 01010000 = 80

= 29

= 00010000 = 16

Example: Using Bitwise Operations

25

• x & 1
• (x + 7) & 0xFFFFFFF8
• x << 2

“x is odd”
“round up to a multiple of 8”
"multiply by 4"

Addition Example
• Compute 5 + 6 assuming all ints are stored as eight-bit (1

byte) unsigned values

Like you learned in grade school, only binary!

0 0 0 0 0 1 0 1
+ 0 0 0 0 0 1 1 0

1 1 0 1

1

… and with a finite number of digits

0 0 0 0 = 11 (Base-10)

Addition Example with Overflow
• Compute 200 + 100 assuming all ints are stored as eight-

bit (1 byte) unsigned values

Like you learned in grade school, only binary!

1 1 0 0 1 0 0 0
+ 0 1 1 0 0 1 0 0

0 0 1 1

… and with a finite number of digits

0 1 0 0

1 1

= 44 (Base-10)

Error Cases
• Assume 𝑤-bit unsigned values

• 𝑥 +:; 𝑦 = =
𝑥 + 𝑦 (normal)
𝑥 + 𝑦 − 2: (overFlow)

• overflow has occurred iff 𝑥 +:; 𝑦 < 𝑥

0 2: 2 ⋅ 2:

[)
representable values
[)Possible values of 𝑥 + 𝑦

Exercise 5: Binary Addition
• Given the following 5-bit unsigned values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?
00010 00101

01100 00100

10100 10001

Exercise 5: Binary Addition
• Given the following 5-bit unsigned values, compute their

sum and indicate whether or not an overflow occurred

x y x+y overflow?
00010 00101

01100 00100

10100 10001

00111

10000

00101

no
no
yes

Multiplication Example
• Compute 5 x 6 assuming all ints are stored as eight-bit (1

byte) unsigned values

Like you learned in grade school, only binary!

0 0 0 0 0 1 0 1
x 0 0 0 0 0 1 1 0

… and with a finite number of digits

= 30 (Base-10)

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0

+ _ 0 0 0 0 0 1 0 1 0 0
0 0 0 1 1 1 1 0

Addition Example
• Compute 200 x 3 assuming all ints are stored as eight-bit

(1 byte) unsigned values

Like you learned in grade school, only binary!

1 1 0 0 1 0 0 0
x 0 0 0 0 0 0 1 1

… and with a finite number of digits

= 88 (Base-10)

1 1 0 0 1 0 0 0
+ _ 1 1 0 0 1 0 0 0 0

0 1 0 1 1 0 0 0 1 0

Error Cases
• Assume 𝑤-bit unsigned values

• 𝑥 ∗:; 𝑦 = 𝑥 ⋅ 𝑦 mod 2:

0 2: 2: ⋅ 2:

[)
representable values
[)

Possible values of 𝑥 ∗ 𝑦

Exercise 6: Binary Multiplication
• Given the following 3-bit unsigned values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?
100 101

010 011

111 010

Exercise 6: Binary Multiplication
• Given the following 3-bit unsigned values, compute their

product and indicate whether or not an overflow occurred

x y x*y overflow?
100 101

010 011

111 010

100

110

110

yes
no
yes

Multiplying with Shifts
• Multiplication is slow
• Bit shifting is kind of like multiplication, and is often faster

• x * 8 = x << 3
• x * 10 = x << 3 + x << 1

• Most compilers will automatically replace multiplications
with shifts where possible

36

Exercise 7: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have any particular questions you’d like me to
address in this week’s problem session?

4. Do you have any comments or feedback?

