Lecture 2: Representing Integers

CS 105

Abstraction

Memory: A (very large) array of bytes

- Memory is an array of bits
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
 - Often expressed in hexadecimal
- We speak of the *value* in memory at an address
 - The value may be a single byte ...
 - ... or a multi-byte quantity starting at that address

Representing Integers

- Arabic Numerals: 47
- Roman Numerals: XLVII
- ・Brahmi Numerals: そう

Base-10 Integers

Storing bits

- Static random access memory (SRAM): stores each bit of data in a flip-flop, a circuit with two stable states
- Dynamic Memory (DRAM): stores each bit of data in a capacitor, which stores energy in an electric field (or not)
- Magnetic Disk: regions of the platter are magnetized with either N-S polarity or S-N polarity
- Optical Disk: stores bits as tiny indentations (pits) or not (lands) that reflect light differently
- Flash Disk: electrons are stored in one of two gates separated by oxide layers

Base-2 Integers (aka Binary Numbers)

128 (2⁷) **64** (2⁶) **32** (2⁵) **16** (2⁴) **8** (2³) **4** (2²) **2** (2¹) **1** (2⁰)

Binary Numbers

- Decimal (Base-10):
 4211
 - $= 4 \cdot 10^3 + 2 \cdot 10^2 + 1 \cdot 10^1 + 1 \cdot 10^0$ = 4211
- Binary (Base-2):
 - $1011 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 11$

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?
 - 1. 0001
 - 2. 1010
 - 3. 0111
 - 4. 1111

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?
 - 1. 0001 = $0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1$
 - 2. 1010 = $1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 8 + 2 = 10$
 - 3. **0111** = $0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 4 + 2 + 1 = 7$
 - 4. **1111** = $1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 2 + 1 = 15$

Binary Numbers

ON A SCALE OF 1 TO 10, HOW LIKELY IS IT THAT THIS QUESTION 15 USING BINARY? ...4? WHAT'S A 4 ?

There are 10 types of people in the world: Those who understand binary, and those who don't.

Exercise 2: Binary Number Range

- What are the max number and min number that can be represented by a w-bit binary number?
 - 1. w = 3
 - 2. w = 4
 - 3. w = 8

Exercise 2: Binary Number Range

 What are the max number and min number that can be represented by a w-bit binary number?

1.
$$w = 3$$
 min = 000₂ = 0₁₀ max = 111₂ = 2² + 2¹ + 2⁰ = 7₁₀
2. $w = 4$ min = 0000₂ = 0₁₀ max = 1111₂ = 2³ + 2² + 2¹ + 2⁰ = 15₁₀
3. $w = 8$ min = 00000000₂ = 0₁₀ max = 11111111₂ = 2⁷ + 2⁶ + 2⁵ + 2⁴ + 2³ + 2² + 2¹ + 2⁰ = 255₁₀

Unsigned Integers in C

C Data Type	Size (bytes)		
unsigned char	1		
unsigned short	2		
unsigned int	4		
unsigned long	8		

ASCII characters

Char	Dec	Binary	Char	Dec	Biı									
!	33	00100001	1	49	00110001	А	65	01000001	Q	81	01010001	а	97	0110
"	34	00100010	2	50	00110010	В	66	01000010	R	82	01010010	b	98	0110
#	35	00100011	3	51	00110011	С	67	01000011	S	83	01010011	С	99	0110
\$	36	00100100	4	52	00110100	D	68	01000100	Т	84	01010100	d	100	0110
%	37	00100101	5	53	00110101	Е	69	01000101	U	85	01010101	е	101	0110
&	38	00100110	6	54	00110110	F	70	01000110	V	86	01010110	f	102	0110
,	39	00100111	7	55	00110111	G	71	01000111	W	87	01010111	g	103	0110
(40	00101000	8	56	00111000	н	72	01001000	Х	88	01011000	h	104	0110
)	41	00101001	9	57	00111001	I.	73	01001001	Y	89	01011001	i	105	0110
*	42	00101010	:	58	00111010	J	74	01001010	Z	90	01011010	j	106	0110
+	43	00101011	•	59	00111011	К	75	01001011	[91	01011011	k	107	0110
,	44	00101100	<	60	00111100	L	76	01001100	١	92	01011100	I.	108	0110
-	45	00101101	=	61	00111101	М	77	01001101]	93	01011101	m	109	0110
	46	00101110	>	62	00111110	N	78	01001110	۸	94	01011110	n	110	0110
/	47	00101111	?	63	00111111	0	79	01001111	_	95	01011111	0	111	0110
0	48	00110000	@	64	01000000	Р	80	01010000	``	96	01100000	р	112	0111

Hexidecimal Numbers

0x2c3530e1

Dec	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	а
11	b
12	С
13	d
14	е
15	f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the representation of each value in (1) binary and (2) decimal?
 - 1. 0x0a
 - 2. 0x11
 - 3. 0x2f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the representation of each value in (1) binary and (2) decimal?
 - 1. $0x0a = 00001010_2 = 10_{10}$
 - 2. $0x11 = 00010001_2 = 17_{10}$
 - 3. $0x2f = 00101111_2 = 47_{10}$

Endianness

47 vs 74

BIG ENDIAN - The way people always broke their eggs in the Lilliput land

LITTLE ENDIAN - The way the king then ordered the people to break their eggs

Endianness

• **Big Endian:** low-order bits go on the right (47)

- I tend to think in big endian numbers, so examples in class will generally use this representation
- Networks generally use big endian (aka network byte order)
- Little Endian: low-order bits go on the left (74)
 - Most modern machines use this representation
- I will try to always be clear about whether I'm using a big endian or little endian representation
- When in doubt, ask!

Arithmetic Logic Unit (ALU)

 circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators &, I, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, ||, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Shift operators << , >>

- Left shift fills with zeros
- For unsigned integers, right shift is logical (fills with zeros)

Exercise 4: Bitwise vs Logical Operations

Assume unsigned char data type (one byte). What do each of the following expressions evaluate to (interpreted as unsigned integers and expressed base-10)?

- 1. ~226
- 2. !226
- 3. 120 & 85
- 4. 120 | 85
- 5. 120 && 85
- 6. 120 || 85

7. 81 << 4

8. 81 << 2

9. 81 >> 4

10.81 >> 2

Exercise 4: Bitwise vs Logical Operations

Assume unsigned char data type (one byte). What do each of the following expressions evaluate to (interpreted as unsigned integers and expressed base-10)?

1. ~226 2. !226	$= \sim 11100010 = 00011101 = 29$ $= !11100010 = 00000000 = 0$
 3. 120 & 85 4. 120 85 5. 120 & 85 6. 120 85 	= 01111000 & 01010101 = 01010000 = 80 = 01111000 01010101 = 01111101 = 125 = 01111000 & 01010101 = 00000001 = 1 = 01111000 01010101 = 00000001 = 1
7. 81 << 4 8. 81 << 2 9. 81 >> 4 10.81 >> 2	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Example: Using Bitwise Operations

• x & 1 "x is odd"

- (x + 7) & 0xFFFFFF8 "round up to a multiple of 8"
- x << 2 "multiply by 4"

Addition Example

 Compute 5 + 6 assuming all ints are stored as eight-bit (1 byte) unsigned values

100000101+ 0000011000001011 = 11 (Base-10)

Like you learned in grade school, only binary! ... and with a finite number of digits

Addition Example with Overflow

 Compute 200 + 100 assuming all ints are stored as eightbit (1 byte) unsigned values

$$\begin{array}{r}
11\\
11001000\\
+01100100\\
00101100 = 44 (Base-10)
\end{array}$$

Like you learned in grade school, only binary! ... and with a finite number of digits

Error Cases

• Assume *w*-bit unsigned values

•
$$x + {}^{u}_{w} y = \begin{cases} x + y & \text{(normal)} \\ x + y - 2^{w} & \text{(overflow)} \end{cases}$$

• overflow has occurred iff $x + u_w^u y < x$

Exercise 5: Binary Addition

 Given the following 5-bit unsigned values, compute their sum and indicate whether or not an overflow occurred

x	У	x+y	overflow?
00010	00101		
01100	00100		
10100	10001		

Exercise 5: Binary Addition

 Given the following 5-bit unsigned values, compute their sum and indicate whether or not an overflow occurred

X	У	x+y	overflow?
00010	00101	00111	no
01100	00100	10000	no
10100	10001	00101	yes

Multiplication Example

 Compute 5 x 6 assuming all ints are stored as eight-bit (1 byte) unsigned values

00000101

<u>X00000110</u>

00011110 = 30 (Base-10)

Like you learned in grade school, only binary! ... and with a finite number of digits

Addition Example

 Compute 200 x 3 assuming all ints are stored as eight-bit (1 byte) unsigned values

Like you learned in grade school, only binary! ... and with a finite number of digits

Error Cases

• Assume *w*-bit unsigned values

•
$$x *_w^u y = (x \cdot y) \mod 2^w$$

Exercise 6: Binary Multiplication

• Given the following 3-bit unsigned values, compute their product and indicate whether or not an overflow occurred

x	У	x*y	overflow?
100	101		
010	011		
111	010		

Exercise 6: Binary Multiplication

• Given the following 3-bit unsigned values, compute their product and indicate whether or not an overflow occurred

x	У	x*y	overflow?
100	101	100	yes
010	011	110	no
111	010	110	yes

Multiplying with Shifts

- Multiplication is slow
- Bit shifting is kind of like multiplication, and is often faster
 - x * 8 = x << 3
 - x * 10 = x << 3 + x << 1
- Most compilers will automatically replace multiplications with shifts where possible

Exercise 7: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - 4. Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have any particular questions you'd like me to address in this week's problem session?
- 4. Do you have any comments or feedback?