
CS 105

Lecture 1: Introduction to Computer Systems

Exercise 0: Introductions
• Go onto the CS 105 Zulip (https://cs105s21.zulipchat.com)

and introduce yourself
• Notice that there is a channel called #q&a. If you have

questions while watching the lecture videos, post them there!

Abstraction

• Example 1: Is x2 ≥ 0?
• Floats: Yes!

• Ints:
• 40000 * 40000 ➙ 1600000000
• 50000 * 50000 ➙ ??

• Example 2: Is (x + y) + z = x + (y + z)?
• Ints: Yes!
• Floats:

• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ ??

Correctness

Performance

• Hierarchical memory organization
• Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048]){

int i,j;
for (j = 0; j < 2048; j++){

for (i = 0; i < 2048; i++){
dst[i][j] = src[i][j];

}
}

}

void copyij(int src[2048][2048],
int dst[2048][2048]){

int i,j;
for (i = 0; i < 2048; i++){

for (j = 0; j < 2048; j++){
dst[i][j] = src[i][j];

}
}

}

81.8ms4.3ms

Security

void admin_stuff(int authenticated){
if(authenticated){

// do admin stuff
}

}

int dontTryThisAtHome(char * user_input, int size) {
char data[size];
int ret = memcpy(*user_input, data);
return ret;

}

Bits
• a bit is a binary digit that can have two possible values

• can be physically represented with a two state device

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Boolean Algebra
• Developed by George Boole in 19th Century
• Algebraic representation of logic---encode “True” as 1 and

“False” as 0

And Or

Not Exclusive-Or (Xor)

11

Exercise 1: Boolean Operations
• Evaluate each of the following expressions

1. 1 | (~1)
2. ~(1 | 1)
3. (~1) & 1
4. ~(1 ^ 1)

Exercise 1: Boolean Operations
• Evaluate each of the following expressions

1. 1 | (~1)
2. ~(1 | 1)
3. (~1) & 1
4. ~(1 ^ 1)

= 1 | 0 = 1
= ~1 = 0
= 0 & 1 = 0
= ~0 = 1

Bytes and Memory
• Memory is an array of bits

• A byte is a unit of eight bits

• An index into the array is an address,
location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at
an address
• The value may be a single byte …
• … or a multi-byte quantity starting

at that address
1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

1
1

1
0

0

1

2

3

01101100

01010011

11010001

00110111

bytes

General Boolean algebras

• Bitwise operations on bytes

• How does this map to set operations?

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

15

Exercise 2 : Bitwise Operations
• Assume: a = 01101100, b = 10101010

• What are the results of evaluating the following Boolean
operations?

• ~a
• ~b
• a & b
• a | b
• a ^ b

Exercise 2 : Bitwise Operations
• Assume: a = 01101100, b = 10101010

• What are the results of evaluating the following Boolean
operations?

• ~a
• ~b
• a & b
• a | b
• a ^ b

= ~01101100 = 10010011

= ~10101010 = 01010101

= 01101100 & 10101010 = 00101000

= 01101100 | 10101010 = 11101110

= 01101100 ^ 10101010 = 11000110

Bitwise vs Logical Operations in C
• Bitwise Operators &, |, ~, ^

• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

18

Exercise 3: Bitwise vs Logical Operations
• ~01000001
• ~00000000
• ~~01000001

• !01000001
• !00000000
• !!01000001

• 01101001 & 01010101
• 01101001 | 01010101

• 01101001 && 01010101
• 01101001 || 01010101

19

Exercise 3: Bitwise vs Logical Operations
• ~01000001
• ~00000000
• ~~01000001

• !01000001
• !00000000
• !!01000001

• 01101001 & 01010101
• 01101001 | 01010101

• 01101001 && 01010101
• 01101001 || 01010101

10111110
11111111
01000001

00000000
00000001
00000001

01000001
01111101

00000001
00000001

20

Bit Shifting
• Left Shift: x << y

• Shift bit-vector x left y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y
• Shift bit-vector x right y positions
• Throw away extra bits on right
• Logical shift: Fill with 0’s on left
• Arithmetic shift: Replicate most

significant bit on left

Choice between logical and
arithmetic depends on the
type of data

21

Undefined Behavior if you
shift amount < 0 or ≥ word
size

Example: Bit Shifting
• 01101001 << 4
• 01101001 >>l 2
• 01101001 >>a 4

10010000
00011010
00000110

Exercise 4: Bit Shifting
• 10101010 << 4
• 10101010 >>l 4
• 10101010 >>a 4

10100000
00001010
11111010

Bits and Bytes Require Interpretation
00000000 00110101 00110000 00110001
might be interpreted as

• The integer 3,485,74510

• A floating point number close to 4.884569 x 10-39

• The string “105”
• A portion of an image or video
• An address in memory

Information is Bits + Context

Exercise 5: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Are there any particular questions that you would like
me to address in this week’s problem session?

4. Do you have any other comments or feedback?

