
CS105 – Computer Systems Spring 2021

Assignment 7: Shell Lab
Due: Tuesday, April 6, 2021 at 11:59pm PDT

In this homework, you will be building out the core system-call logic of an interactive shell. You may choose
your partner for this assignment, but, as usual, they must be in your learning community.

The material for this lab in a tar file, available on the course web page or on the course VM in the /data

directory. You can unpack it directly by going to your home directory and running:

tar xvf /data/shell-handout.tar

The directory shell-handout will be created, with three files: Makefile, ish.c (where you’ll work), and
snooze.c (a helper for testing). Fill out your team members in the comment the top of ish.c, then run
make to build the executables ish (your shell) and snooze (for testing).

When you have completed this homework, you will turn in two files: ish.c and feedback.txt. Submit it
in the usual way on Gradescope, as a joint submission. You may, of course, submit several times—just be
sure that all the submissions are the same team and all submissions include both files.

It’s shell...-ish

The shell is the expert’s control hatch to the computer, typically run in a terminal or console. In this lab,
you’ll be writing the core system-call logic of a very tiny shell we’re calling ish.

The starter code has three parts, which we list here in order of importance (and reverse order of appearance
in the file):

• The main function, which consists of a read/evaluate loop. It calls init to set things up, then it enters
a loop where it prompts and uses getline to read a line from the user, and then it parses the line into
a commmand and arguments.

• The definition of job t and its associated functions, add job, free job, and check jobs. You’ll
use these functions to keep track of background jobs; you’ll need to write check jobs yourself.

• The parse line function, which breaks a line up into an array of ‘words’, the first of which will be
interpreted as a command. You should not have to make any changes to this function.

You have six tasks, which will touch three functions in total (plus one you’ll write yourself):

1. Get ish to actually run the command. (main)

2. Have ish print the status if it was non-zero. (main)

3. Run background jobs in the background. (main)

4. Wait for background jobs to finish before exiting the shell. (main, check jobs)

5. Check on jobs before each prompt. (main, check jobs)

6. Only check on jobs when something has changed. (main, init)

7-1

We recommend that you read through the entire document, but that you not move on from one task until
you’re confident you have the right behavior. Each task gives some examples of correct behavior at the end.
There are 52 points available total.

Note that, throughout, the shell itself only prints to standard error, a special output stream that’s different
from standard output. You can see examples already in the starter code, where we use the fprintf system
call with the FILE stream stderr as its first argument. You should do that, too.

1 Running the command

(10 points)

Towards the end of main, you’ll find the code snippet:

int num_words = 0;

char **args = parse_line(buf, len, &num_words);

assert(args);

assert(args[num_words] == NULL);

// TODO #1: run the command

At this point in the program, args is an array of strings (i.e., an array of char *). Your first task is to get
ish to actually run the command in args. There are three steps:

1. Use the fork system call to create a new process.

2. In the child process, use the execve system call to run the given program.

3. In the parent process, use the waitpid system call to wait for the child process to complete.

You’ll want to look at the manpages for each of these commands: run man fork, etc. You need to read
these pages carefully, especially the RETURN VALUES section.

In particular, execve is tricky to use. You should use the first argument of args as the command, but
execve needs all of the args as the second argument. You should use an empty environment, i.e., an array
of char * which just has one NULL entry.

If execve fails for some reason, you should indicate failure on standard error; use perror, following the
example below. (Note that perror is only for reporting errors. The man pages for perror and errno

should help, if you’re confused.)

Note that execve doesn’t do any of the fancy PATH lookup that a real shell does, so we’ll be using explicit
paths to name programs.

Examples

When you are done, you should able to have the following interaction, where ^D represents pressing control-
D in your terminal (which sends an EOF).

7-2

¢ /bin/echo hello

hello

¢ /bin/nonesuch

ish: command error: No such file or directory

¢ ^D

Goodbye!

2 Printing exit status

(8 points)

Every command has an exit status, a number between 0 and 255. Check out man 3 exit (where the 3

specifies a section of the manpages, so you see the C function and not the shell command).

A process exits with 0 or EXIT SUCCESS (which is defined to be 0 in /usr/include/stdlib.h) to indi-
catesuccess; anything else indicates failure. While main returns an int, it’s best to stick to values between
0 and 255, as different operating systems do different things.

Your next task is to give an informative message when the command exits with failure. Remember to use
fprintf with stderr as the output stream.

The DESCRIPTION section of waitpid’s manpage contains important information about how to extract the
exit status from the result of waitpid.

Examples

Here’s an interaction on the VM. On your machine, tar might give a different error message.

¢ /usr/bin/tar

/usr/bin/tar: You must specify one of the ‘-Acdtrux’ or ‘--test-label’ options

Try ‘/usr/bin/tar --help’ or ‘/usr/bin/tar --usage’ for more information.

ish: status 2

¢ /usr/bin/true

¢ /usr/bin/false

ish: status 1

¢ ^D

Goodbye!

3 Running background jobs

(10 points)

Now that your shell can run and report on jobs in the foreground, it’s time to support running background
tasks. Like a real shell, we’ll use & at the end of a command to mark it as “asynchronous”, i.e., to be run in
the background while the shell continues.

7-3

We’ve already done the parsing logic for you: the variable bg will be set to 1 when the command should be
run in the background, and it will be 0 when it’s not. (The logic is right above where you solved tasks 1 and
2).

You’ll want to change a few things: you don’t want to wait for background jobs, and you’ll need to add them
to the job list for the next tasks. (If you don’t do it now, you’ll need to do it later.)

Examples

To test background jobs, we need a program that takes some time. A nice way to do this is to write a custom
test program—we’ve provided snooze.c, which you should make sure is compiled. In the following exam-
ple, we run ish first running snooze in the foreground, then in the background—while typing /bin/echo

hi as snooze is running. Notice how snooze’s output is interleaved with our input!

¢ ./snooze

Taking a nap...zzzz...zzzz......yawn! What nice nap.

¢ ./snooze &

¢ Taking a nap.../bin/eczzzz...ho hi

hi

¢ zzzz......yawn! What a nice nap.

^D

Goodbye!

4 Waiting for background jobs

(8 points)

Next, we should make our shell wait for background jobs to complete before it fully exits. To see why, look
at the following interaction:

$./ish

¢ ./snooze &

¢ Taking a nap...^D

Goodbye!

$ zzzz...zzzz......yawn! What a nice nap.

Here $ is our actual shell prompt. And look: somebody is snoring in our terminal!

There are two TODO marks for task 4: one in main and one check jobs.

First, let’s address the one in main. If there are any background jobs, you should output on a new line, “Jobs
are still running...”, and then give output information for each remaining job as it completes: you can use
check jobs to wait for each job in turn.

The check jobs function should iterate through every job in the list, using the waitpid system call to see
if the job has terminated. If it’s terminated successfully, it should print out “job COMMAND complete” on its

7-4

own line; if it ended unsuccessfully, it should print out “job COMMAND status STATUS”. Here COMMAND is the
command name (i.e., job->command) and STATUS is the exit status.

For now, we want to use waitpid without any options (i.e., options = 0); later on, we’ll reuse this code
setting options WNOHANG.

Examples

Here, we run snooze in the background and immediately exit ish. You can see snooze’s snoring and
wake-up, followed by its wakeup.

¢ ./snooze &

¢ Taking a nap...^D

Jobs are still running...

zzzz...zzzz......yawn! What a nice nap.

job ’./snooze’ complete

Goodbye!

Here’s another, running snooze 4 followed by snooze, both in the background. Note that jobs are waited
for in decreasing recency:

¢ ./snooze 4 &

¢ Taking a nap..../snoozzzzz...e &

¢ Taking a nap...zzzz...zzzz...^D

Jobs are still running...

...yawn! What a nice nap.

zzzz......yawn! What a nice nap.

job ’./snooze’ complete

job ’./snooze 4’ status 4

Goodbye!

5 Checking for completed jobs

(8 points)

We’d like to update the user about background jobs as they complete. To start with, have main call
check jobs before prompting the user and reading the line. Specify the options as WNOHANG.

Now, change check jobs to support the new option! You’ll need to make two changes: first, make sure your
options argument is going to the waitpid call. Then make sure that you’re saving the pid t returned from
waitpid—when you pass WNOHANG, it might no be a process ID at all! Read waitpid’s manpage closely.
Finally, you’ll need to add a case that prints out “job ’COMMAND’ still running”—but only when WNOHANG is
set.

7-5

Examples

Here we run a command in the background and hit return occasionally over the course of five seconds. Note
that /bin/sleep is a real, pre-existing utility that’s different from the ./snooze helper we provided; check
man sleep for more information:

¢ /bin/sleep 5 &

job ’/bin/sleep 5’ still running

¢
job ’/bin/sleep 5’ still running

¢
job ’/bin/sleep 5’ still running

¢
job ’/bin/sleep 5’ complete

¢ ^D

Goodbye!

Here we run two commands in the background, hitting return occasionally.

¢ /bin/sleep 5 &

job ’/bin/sleep 5’ still running

¢ /bin/sleep 3 &

job ’/bin/sleep 3’ still running

job ’/bin/sleep 5’ still running

¢
job ’/bin/sleep 3’ still running

job ’/bin/sleep 5’ complete

¢
job ’/bin/sleep 3’ complete

¢ ^D

Goodbye!

6 Checking only when something changed

(5 points)

It’s annoying to update the user unnecessarily—we should only report on background jobs when something
has changed. To do so, we’ll set up a signal handler for the SIGCHLD signal. Whenever a child process
terminates, the parent process receives a SIGCHLD signal. By default, processes ignore these signals... but
we’ll use them to record that something happened, and so the user should be updated.

To start, you need to update init with a signal handler. Signal handlers are very restricted—you shouldn’t
run a lot of code in them! The standard thing to do is to set a global variable that says, “Hey, something
happened!” that your program checks at appropriate points.

Define a handler function (takes an int and returns void) and a global int variable, which defaults to 0.
Your handler should set it to 1 to indicate that SIGCHLD arrived.

7-6

Currently, init installs a signal handler to ignore SIGINT (i.e., control-C). You’ll want to set the action’s
sa handler field to your function, and you’ll want to set its sa flags to SA RESTART. (If you don’t set
this flag, your shell might behave strangely when SIGCHLD comes in the middle of another system call.)

Finally, use your global variable to condition whether or not you check for jobs before prompting.

Examples

Here we run a background command that will sleep for five seconds. We hit return a few times and get no
updates. After waiting four or five seconds, we hit return again and do get an update.

¢ /bin/sleep 5 &

¢
¢
¢
¢
job ’/bin/sleep 5’ complete

¢ ^D

Goodbye!

Here’s another example, where we run a command in the interim, and then wait several seconds before
hitting return gain.

¢ /bin/sleep 5 &

¢ /bin/echo hi

hi

job ’/bin/sleep 5’ still running

¢
job ’/bin/sleep 5’ complete

¢ ^D

Goodbye!

Notice that we get the job update after the call to echo. Why? When echo terminates, it will send its
own SIGCHLD, which will get caught by our handler and cause us to update the user about which tasks are
running.

Feedback

(3 points)

Please remember to include a file called feedback.txt in your submission that answers the following
questions:

1. How long did each of you spend on this assignment?

7-7

2. Any comments on this assignment?

3. Did you attend your learning community?

As always, how you answer these questions will not affect your grade, but whether you answer them will.

Submission

Submit your ish.c and feedback.txt files as one submission on Gradescope. And remember to tag your
partner as a collaborator!

7-8

	Running the command
	Printing exit status
	Running background jobs
	Waiting for background jobs
	Checking for completed jobs
	Checking only when something changed

