

Admin

Assignment 9

Assignment 10

from: Claremont to: Rowland Heights
We'd like to bias search towards the actual solution

from: Claremont to: Rowland Heights Ideas?

Heuristic

Merriam-Webster's Online Dictionary
Heuristic (pron. \hyu-'ris-tikl): adj. [from Greek heuriskein to discover.] involving or serving as an aid to learning, discovery, or problem-solving by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (2/19/13)
heuristic 1 . Of or relating to a usually speculative formulation serving as a guide in the investigation or solution of a problem: "The historian discovers the past by the judicious use of such a heuristic device as the 'ideal type'" (Karl J. Weintraub).

Heuristic function: $h(n)$

An estimate of how close the node is to a goal

Uses domain-specific knowledge!

Examples

- Map path finding?
- straight-line distance from the node to the goal ("as the crow flies")
- 8-puzzle?
- how many tiles are out of place
- sum of the "distances" of the out of place tiles
- Missionaries and cannibals?
- number of people on the starting bank

Heuristic function: $h(n)$

An estimate of how close the node is to a goal

Uses domain-specific knowledge!

Examples

- Map path finding?

ㅁ 8-puzzle?

- Missionaries and cannibals?

Two heuristics

2	8	Which state is better?			
1	6				
	7		1	2	3
1	2		8		4
8	6		7	6	5
	7		GOAL		
6	2				
8					
7	1				

Informed search algorithms
Best first search is called an "informed" search
algorithm
Why wouldn't we always use an informed algorithm?
a Coming up with good heuristics can be hard for some
problems
a There is computational overhead (both in calculating the
heuristic and in keeping track of the next "best" state)

Informed search algorithms

Any other problems/concerns about best first search?

Informed search algorithms

Any other problems/concerns about best first search? \square Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic
What would the search do?

Informed search algorithms

Any other problems/concerns about best first search?
\square Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic
What is the problem?

Informed search algorithms

Any other problems/concerns about best first search? \square Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic
Doesn't take into account how far it has come. Best first search is a "greedy" algorithm

Informed search algorithms

Best first search is called an "informed" search algorithm

There are many other informed search algorithms: $\square A^{*}$ search (and variants)

- Theta*
\square Beam search

Sudoku

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

7	2	8	9	3	6	5	1	4
9	4	3	1	5	8	6	7	2
5	6	1	4	7	2	9	3	8
8	3	4	7	6	5	2	9	1
2	1	7	8	4	9	3	6	5
6	5	9	2	1	3	8	4	7
1	8	6	3	2	4	7	5	9
3	7	2	5	9	1	4	8	6
4	9	5	6	8	7	1	2	3

Fill in the grid with the numbers 1-9 - each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

How can we pose this as a search problem?
State
Start state

Goal state
State space/transitions

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)

- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Fill in the grid with the numbers 1-9

[^0]
Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints
$1,6,7,9$

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

How many next states?
What are they?

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints
$2,6,7,8,9$

Fill in the grid with the numbers $1-9$

- each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

$$
6,7,8,9
$$

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

What are the next states?

Fill in the grid with the numbers 1-9

[^1]
Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

$$
7,8,9
$$

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that mee constraints
(7) 8,9

Fill in the grid with the numbers $1-9$

- each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

Sudoku

Generate next states

- pick an open entry
- try all possible numbers that meet constraints

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Fill in the grid with the numbers 1-9

[^2]
Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Now what?

Try another branch, i.e. go back to a place where we had a decision and try a different one

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

7,8.) 9

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

Best first Sudoku search

DFS and BFS will choose entries (and numbers within those entries) randomly

Pick the entry that is MOST constrained

People often try and find entries where only one option exists and only fill it in that way (very little search)

Generate next states:
pick an open entry
try all possible numbers that meet
constraints

Best first Sudoku search

DFS and BFS will choose entries (and numbers within those entries) randomly

Is that how people do it?

How do you do it?

Heuristics for best first search? Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Representing the Sudoku board

- Board is a matrix (list of lists)
\square Each entry is either:
- a number (if we've filled in the space already, either during search or as part of the starting state)
- a list of numbers that are valid to put in that entry if it hasn't been filled in yet

Representing the Sudoku board

- a number (if we've filled in the space already, either during search or as part of the starting state)
- a list of numbers that are valid to put in that entry if it hasn't been filled in yet

[^0]: - each row has 1-9 (without repetition)
 - each column has 1-9 (without repetition)
 - each quadrant has 1-9 (without repetition)

[^1]: \square each row has 1-9 (without repetition)

 - each column has 1-9 (without repetition)
 - each quadrant has 1-9 (without repetition)

[^2]: \square each row has 1-9 (without repetition)

 - each column has 1-9 (without repetition)
 - each quadrant has 1-9 (without repetition)

