

Search problems

Where to start

Where to finish (goal)

What the "world" (in this case a maze) looks like \square We'll define the world as a collection of discrete states
\square States are connected if we can get from one state to another by taking a particular action
\square This is called the "state space"

State space example

Search algorithm

Keep track of a list of states that we could visit, we'll call it "to_visit"

General idea:

\square take a state off the to_visit list
\square if it's the goal state

- we're done!
\square if it's not the goal state
- Add all of the successive states to the to_visit list
- repeat

Search algorithms
add the start state to to_visit
Repeat
\square take a state off the to_visit list
\square if it's the goal state
if it's not the goal state - Add all of the successive states to the to _visit list

N -queens problem

Place N queens on an N by N chess board such that none of the N queens are attacking any other queen.

N -queens problem

Place N queens on an N by N chess board such that none of the N queens are attacking any other queen.

N -queens problem

Place N queens on an N by N chess board such that none of the N queens are attacking any other queen.
How do we solve this with search:

What is a state?

What is the start state?

What is the goal?

How do we transition from one state to the next?

Search algorithm

add the start state to to_visit

Repeat

- take a state off the to_visit list
- if it's the goal state is this a goal state? ■ we're done!
- if it's not the goal state What states can I get to from the current state? - Add all of the successive states to the to _visit list

Any problem that we can define these three things can be plugged into the search algorithm!

