

Longest word code

http://www.cs.pomona.edu/~dkauchak/classes/cs51a/examples/for_for.txt

3

P(data | label) $P(data | label) = P(f_1, f_2, ..., f_n | label)$ $\approx P(f_1 | label) *$ $P(f_2 | label) *$... $P(f_n | label)$ This is generally not true!
However..., it makes our life easier.
This is why the model is called Naïve Bayes

An aside: P(heads)
What is the P(heads) on a fair coin? 0.5
What if you didn't know that, but had a coin to experiment with?
Flip it a bunch of times and count how many times it comes up heads
$P(heads) = \frac{number of times heads came up}{total number of coin tosses}$

Try it out...

 $P(heads) = \frac{number of times heads came up}{total number of coin tosses}$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

P(*feature*|*positive*) = ?

Text classification training

Positive

I loved it I loved that movie I hated that I loved it Negative

I hated it I hated that movie I loved that | hated it

We'll assume words just occur once in any given sentence

Text classification training

Positive

- I loved it
- I loved that movie
- I hated that loved it

Negative

I hated that movie I loved that hated it

I hated it

We'll assume words just occur once in any given sentence

Training the model Positive

I loved it I loved that movie I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

For each word and each label, learn:

p(word | label)

Training the model Positive Negative I loved it I hated it I loved that movie I hated that movie I hated that loved it I loved that hated it $P(I \mid positive) = ?$

 $P(word|label) = \frac{number of times word occured in "label" examples}{total number of examples with that label}$

Training the	model		
Positive		Negative	
l loved it		l hated it	
l loved that movie		I hated that movie	
l hated that loved it		I loved that hate	d it
P(I positive) P(loved positive) P(hated positive) P(word label) = <u>number</u>	= 1.0 $= 2/3$ $= 1/3$	P(I negative) P(movie negative) d occured in "label" examples	= 1.0 = ?

Classifying	g		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive) Notice that each	= 1.0 = 1.0 = $2/3$ = $2/3$ = $1/3$ = $1/3$ of this is it's or	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative) wn probability distribution	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3
P(loved pos	itive)		
P(loved pos	itive) = $2/3$		
P(no loved po	ositive) = $1/3$		

(i positive)	= 1.0	P(I negative)	= 1.0
(loved positive)	= 2/3	p(hated negative)	= 1.0
o(it positive)	= 2/3	p(that negative)	= 2/3
o(that positive)	= 2/3	P(movie negative)	= 1/3
o(movie positive)	= 1/3	p(it negative)	= 2/3
(hated positive)	= 1/3	p(loved negative)	= 1/3

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 2/3	p(hated negative)	= 1.0
p(it positive)	= 2/3	p(that negative)	= 2/3
p(that positive)	= 2/3	P(movie negative)	= 1/3
p(movie positive)	= 1/3	p(it negative)	= 2/3
P(hated positive)	=1/3	p(loved negative)	= 1/3
P(I positive) * P(hated p	oositive) * P(movie	e positive) = 1.0 * 1/3 * 1/3	= 1/9

(1]	- 1 0	D/L	- 1.0
(I positive)	-1.0	r(i negative)	- 1.0
	- 2/3	p(nalea negative)	- 1.0
(it positive)	= 2/3	p(that negative)	= 2/3
o(that positive)	= 2/3	P(movie negative)	= 1/3
o(movie positive)	= 1/3	p(it negative)	= 2/3
P(hated positive)	= 1/3	p(loved negative)	= 1/3

Trained m	odel		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive)	= 1.0 = 2/3 = 2/3 = 2/3 = 1/3 = 1/3	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative)	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

 $P(I \ | \ negative) * P(hated \ | \ negative) * P(the \ | \ negative) * P(movie \ | \ negative) =$

'(l positive)	= 1.0	P(l negative)	= 1.0
'(loved positive)	= 2/3	p(hated negative)	= 1.0
p(it positive)	= 2/3	p(that negative)	= 2/3
p(that positive)	= 2/3	P(movie negative)	= 1/3
p(movie positive)	= 1/3	p(it negative)	= 2/3
	= 1/3	p(loved negative)	= 1/3

Trained m	odel		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive)	= 1.0 = 2/3 = 2/3 = 2/3 = 1/3 = 1/3	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative)	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3
P(I positive) * P(hated pos P(I negative) * P(hated ne	itive) * <mark>P(the </mark> gative) * <mark>P(the</mark>	positive) * P(movie positive) = negative) * P(movie negative)	=
	O! Is this	a problem?	

'(I positive) '(loved positive) o(it positive) o(that positive) o(movie positive) P(hated positive)	= 1.0 = 2/3 = 2/3 = 2/3 = 1/3 = 1/3	P(I negative) = 1. p(hated negative) = 1. p(that negative) = 2/ P(movie negative) = 1/ p(it negative) = 2/ p(loved negative) = 2/

r

٦

Trained m	odel		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive)	= 1.0 = 2/3 = 2/3 = 2/3 = 1/3 = 1/3	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative)	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3
P(I positive) * P(hated pos P(I negative) * P(hated ne Our solution: assume	itive) * P(the gative) * P(the e any unseer	positive) * P(movie positive) = negative) * P(movie negative) n word has a small, fixed	=

Trained m	odel		
P(I positive) P(loved positive) p(it positive) p(that positive) p(movie positive) P(hated positive)	= 1.0 = 2/3 = 2/3 = 2/3 = 1/3 = 1/3	P(I negative) p(hated negative) p(that negative) P(movie negative) p(it negative) p(loved negative)	= 1.0 = 1.0 = 2/3 = 1/3 = 2/3 = 1/3
P(I positive) * P(hated pos	itive) * P(the	positive) * P(movie positive) = 1	/90
P(I negative) * P(hated ne	gative) * P(the	negative) * P(movie negative)	
Our solution: assume	e any unsee	en word has a small, fixed	
probability, e.g. in t	his example	e 1/10	

Full disclaimer

I've fudged a few things on the Naïve Bayes model for simplicity

Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine

If you're curious, I'd be happy to talk to you offline