

Longest word code

Relationship between distributions

Relationship between distributions

$P(51$ Pass, EngPass $)=P($ EngPass $) * P(51$ Pass \mid EngPass $)$

The probability of passing CS51 and English is:

1. Probability of passing English *
2. Probability of passing CS51 given that you passed English

Can think of it as describing the two events happening in two steps:
The likelihood of X and Y happening:

1. How likely it is that Y happened?
2. Given that Y happened, how likely is it that X happened?

Relationship between distributions
$P(51$ Pass, EngPass $)=P(51$ Pass $) * P($ EngPass $\mid 51$ Pass $)$
The probability of passing CS51 and English is:
1. Probability of passing CS51 *
2. Probability of passing English given that you passed $\mathrm{CS51}$
Can also view it with the other event happening first

One observation
$P($ positive $) * P($ datalpositive $)$
$P($ negative $) * P($ data\|negative $)$

An aside: $P($ heads $)$
What is the $P($ heads) on a fair coin?
0.5
What if you didn't know that, but had a coin to
experiment with?
Flip it a bunch of times and count how many times it comes
up heads
P(heads) $=\frac{\text { number of times heads came up }}{\text { total number of coin tosses }}$

Try it out...

$P($ feature \mid label $)$
$P($ heads $)=\frac{\text { number of times heads came up }}{\text { total number of coin tosses }}$
Can we do the same thing here? What is the probability of a
feature given positive, i.e. the probability of a feature occurring in
in the positive label?
$P($ feature 1 positive $)=?$

P(feature |label)

$P($ heads $)=\frac{\text { number of times heads came up }}{\text { total number of coin tosses }}$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

$$
P(\text { feature } \mid \text { positive })=\frac{\text { number of positive examples with that feature }}{\text { total number of positive examples }}
$$

Training Naïve Bayes

Nailve Bayes Text Classification	
Positive	
I loved it I loved that movie I hated that I loved it	Negative
Given examples of text in different categories, learn to predict the category of new examples	
Sentiment classification: given positive/negative examples of text (sentences), learn to predict whether new text is positive/negative	

Text classification training	
Positive	
I loved it I loved that movie I hated that I loved it	Negative I hated it I hated that movie I loved that I hated it
We'll assume words iust occur once in any given sentence	

Text classification training	
Positive	Negative
I loved it I loved that movie I hated that loved it	I hated it I hated that movie I loved that hated it
We'll assume words iust occur once in any given sentence	

Training the model	
Positive I loved it I loved that movie I hated that loved it For each wor p(word \|	Negative I hated it I hated that movie I loved that hated it 1, learn:

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	
I hated that loved it	I hated that movie
I loved that hated it	

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$\mathrm{P}(1 \mid$ positive) $=3 / 3=1.0$	
$P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$	

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$\mathrm{P}(\mathrm{I} \mid$ positive) P(loved \| positive)	
$P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$	

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$\mathrm{P}(1 \mid$ positive)	
P (loved \| positive)	
$P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$	

Training the model			
Positive		Negative	
I loved it		I hated it	
I loved that movie		I hated that movie	
I hated that loved it		I loved that hated it	
P (1 \\| positive)	$=1.0$	$\mathrm{P}(\mathrm{l} \mid$ negative $)=$?	
P (loved \| positive)	$=2 / 3$		
P (hated \| positive)	$=1 / 3$		
$P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$			

Training the model			
Positive		Negative	
I loved it		I hated it	
I loved that movie		I hated that movie	
I hated that loved it		I loved that hated it	
$\mathrm{P}(1 \mid$ positive)	$=1.0$	$\mathrm{P}(1 \mid$ negative)	$=1.0$
P (loved \| positive)	$=2 / 3$	P (movie \| negative)	
P (hated \| positive)	$=1 / 3$		
$P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$			

Training the model			
Positive		Negative	
I loved it		I hated it	
I loved that movie		I hated that movis	
I hated that loved it		I loved that hated it	
$\mathrm{P}(\mathrm{I} \mid$ positive) P (loved \| positive)	$\begin{aligned} & =1.0 \\ & =2 / 3 \end{aligned}$	$\mathrm{P}(1 \mid$ negative) P (movie \| negative)	$\begin{aligned} & =1.0 \\ & =1 / 3 \end{aligned}$
P (hated \| positive)	$=1 / 3$...	
$P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$			

Trained model			
$\mathrm{P}(\mathrm{l} \mid$ positive)	$=1.0$	$\mathrm{P}(1 \mid$ negative $)$	$=1.0$
P(loved \| positive)	$=2 / 3$	p (hated \| negative)	$=1.0$
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
p (movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	p (loved \| negative)	$=1 / 3$
$\mathrm{P}(1 \mid$ positive $) * \mathrm{P}($ hated \mid positive $) * \mathrm{P}($ movie \mid positive $)=1.0 * 1 / 3 * 1 / 3=1 / 9$			
$\mathrm{P}(1 \mid$ negative) $* \mathrm{P}($ hated \| negative) $* \mathrm{P}($ movie \| negative) $=1.0 * 1.0 * 1 / 3=1 / 3$			

Trained model

$\mathrm{P}(I \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
P (loved \| positive)	$=2 / 3$	p (hated \mid negative $)$	$=1.0$
p (it \mid positive)	$=2 / 3$	p (that \mid negative	$=2 / 3$
p (that \| positive)	$=2 / 3$	P (movie \mid negative)	$=1 / 3$
p (movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	p (loved \mid negative)	$=1 / 3$

How would we classify: "I hated movie"?

Trained model			
$\mathrm{P}(1 \mid$ positive)	$=1.0$	$P(1 \mid$ negative $)$	$=1.0$
P (loved \| positive)	$=2 / 3$	p(hated \| negative)	$=1.0$
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
p(movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	p(loved \| negative)	$=1 / 3$
How would we classify: "I hated the movie"?			

Trained model			
$\mathrm{P}(\mathrm{I} \mid$ positive)	$=1.0$	$\mathrm{P}(1 \mid$ negative)	$=1.0$
P(loved \| positive)	$=2 / 3$	p(hated \| negative)	$=1.0$
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
p(movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$
P(hated \| positive)	$=1 / 3$	p(loved \| negative)	$=1 / 3$
$\mathrm{P}(\mathrm{I} \mid$ positive) $* \mathrm{P}($ hated \mid positive) $* \mathrm{P}($ (the \mid positive $) * \mathrm{P}($ movie \mid positive) $=$			
$\mathrm{P}(\mathrm{I} \mid$ negative) $* \mathrm{P}($ hated \mid negative $) * \mathrm{P}($ the \mid negative $) * \mathrm{P}($ movie \mid negative $)=$			

Trained model			
$\mathrm{P}(\mathrm{l} \mid$ positive)	$=1.0$	$\mathrm{P}(1 \mid$ negative)	$=1.0$
P (loved \| positive)	$=2 / 3$	p (hated \| negative)	$=1.0$
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
p (movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	p(loved \| negative)	$=1 / 3$
$\begin{aligned} & \mathrm{P}(\mathrm{I} \mid \text { positive }) * \mathrm{P}(\text { hated } \mid \text { positive }) * \mathrm{P}(\text { the } \mid \text { positive }) * \mathrm{P}(\text { movie } \mid \text { positive })= \\ & \mathrm{P}(\mathrm{I} \mid \text { negative }) * \mathrm{P}(\text { hated } \mid \text { negative }) * \mathrm{P}(\text { the } \mid \text { negative }) * \mathrm{P}(\text { movie } \mid \text { negative })= \end{aligned}$			
What are these?			

Trained model				
$\mathrm{P}(\mathrm{I} \mid$ positive)	$=1.0$	$\mathrm{P}(1 \mid$ negative)	$=1.0$	
P(loved \\| positive)	$=2 / 3$	p (hated \| negative)	$=1.0$	
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$	
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$	
p (movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$	
P (hated \| positive)	$=1 / 3$	p(loved \| negative)	$=1 / 3$	
$\mathrm{P}(\mathrm{I} \mid$ positive) $* \mathrm{P}($ hated \mid positive) $* \mathrm{P}($ the \mid positive $) * \mathrm{P}($ movie \| positive) $=$				
$\mathrm{P}(\mathrm{l} \mid$ negative) * $\mathrm{P}($ hated \mid negative $) * \mathrm{P}($ the \mid negative $) * \mathrm{P}($ movie \mid negative $)=$				
0! Is this a problem?				

Trained model			
$\mathrm{P}(\mathrm{I} \mid$ positive)	$=1.0$	$P(1 \mid$ negative $)$	$=1.0$
P(loved \| positive)	$=2 / 3$	p (hated \| negative)	$=1.0$
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
p (movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$
P(hated \| positive)	$=1 / 3$	p(loved \| negative)	$=1 / 3$
$\mathrm{P}(\mathrm{I} \mid$ positive) $* \mathrm{P}($ hated \| positive) * $\mathrm{P}($ the \| positive) * $\mathrm{P}($ movie \| positive) $=$			
$\mathrm{P}(\mathrm{l} \mid$ negative) $* \mathrm{P}($ hated \mid negative $) * \mathrm{P}($ the \| negative) $* \mathrm{P}($ movie \| negative) $=$			
Yes. They make the entire product go to 0!			

Trained model			
$\mathrm{P}(\mathrm{I} \mid$ positive)	$=1.0$	$\mathrm{P}(1 \mid$ negative)	$=1.0$
P(loved \| positive)	$=2 / 3$	p (hated \| negative)	$=1.0$
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
p (movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	p(loved \| negative)	$=1 / 3$
$\mathrm{P}(\mathrm{I} \mid$ positive) $* \mathrm{P}($ hated \| positive) $* \mathrm{P}($ (he \mid positive $) * \mathrm{P}($ movie \| positive) $=$			
$\mathrm{P}(\mathrm{I} \mid$ negative $) * \mathrm{P}($ hated \mid negative $) * \mathrm{P}($ (he \mid negative $) * \mathrm{P}($ movie \mid negative $)=$			
Our solution: assume any unseen word has a small, fixed probability, e.g. in this example $1 / 10$			

Trained model					
$\mathrm{P}(\mathrm{l} \mid$ positive)	$=1.0$	$P(1 \mid$ negative $)$	$=1.0$		
P(loved \| positive)	$=2 / 3$	p (hated \| negative)	$=1.0$		
p (it \| positive)	$=2 / 3$	p (that \| negative)	$=2 / 3$		
p (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$		
p(movie \| positive)	$=1 / 3$	p (it \| negative)	$=2 / 3$		
P (hated \| positive)	$=1 / 3$	p(loved \| negative)	$=1 / 3$		
$\mathrm{P}(\mathrm{l} \mid$ positive) $* \mathrm{P}$ (hated \| positive) $* \mathrm{P}($ (the \| positive) $* \mathrm{P}$ (movie \| positive) $=1 / 90$					
$\mathrm{P}(1 \mid$ negative) * P(hated \| negative) * P(the	negative) * P(movie	negative) $=1 / 30$			
Our solution: assume any unseen word has a small, fixed probability, e.g. in this example $1 / 10$					

Full disclaimer

l've fudged a few things on the Naïve Bayes model for simplicity

Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine ©

If you're curious, l'd be happy to talk to you offline

