CS51A - Assignment 7

Due: Thursday March 14, at 11:59pm

SIX :
OUR FIELD HASBEEN | [STRUGGLE NO MORE! FIMTHE LATER
STRUGGLING WITH THIS I'™M HERE TO SOLVE WO, THIS PROBLEM
PROBLEM FOR YEARS. IT WJITH ALGORITHIMS! 15 REALLY HARD

\ [e

777 412

https://xked.com/1831/

As always, read through this entire handout before starting to make sure you understand what’s
expected of you. Put your answers to the problems below in a file named with your first name and
last name followed by assign7.py.

You may (and I would encourage you to) work with a partner on this assignment. If you do, you
must both be there when either of you are working on the project and you should only be coding
on one computer (i.e. pair programming). If you would like a partner, but don’t have one, talk to
Prof Papoutsaki or Dr. Dave and we can pair people up.

High-level Overview

For this assignment we will build a Naive Bayes text sentiment classifier that is based on online
reviews and predicts whether a given review is positive or negative. As we’ve done with previous
assignments, we’re going to guide you through implementing the Naive Bayes classifier by asking
you to write a collection of functions.

Training: Our trained model will consist of two dictionaries, one representing positive examples
and one representing negative examples. The entries in the dictionaries will have the key be a word
and the corresponding value to be the p(word|label). To calculate these all you'll need to do is
iterate through each file and count how many times a word occurs and then divide it by the total
number of training examples (that is the total number of lines in the file), e.g.,:

. how many positive examples contained word
p(word|positive) =

the total number of positive examples

We’ve setup the data so that this really comes down to calculating:

how many times word occurred in the positive file

word|positive) =
p(p) the number of lines in the positive file

To calculate these for each word, you’ll first read through the file and store all of the individual
word counts (i.e., the numerator) and then divide all of these values by the number of examples
(i.e., number of lines in the file). You’ll do this once for the positive examples and once for the
negative (though using the same code!).

Testing: Once we have our two dictionaries of probabilities, we’ll be ready to classify new examples.
Given a new review to classify, wy, ws, ..., w,,, we’ll calculate the probability of that review based
on the model as:

p(label|wy, wa, ..., wy,) = p(wi|label) x p(wa|label) * ... * p(wn, |label) = Hp(wﬂlabel)
i=1

This means that we’ll multiply each of the word probabilities given the label for each word in the
review. We’ll do this for both classes (positive and negative) and then classify the review as the
label with the highest probability.

Data

For this assignment, I’ve put together a collection of reviews from www.rateitall.com. The reviews
come from a variety of domains including movies, music, books, and politicians. The orginal data
have ratings from 1 to 5, but I have cleaned these up, leaving only 1s and 5s: those with a 5 score
are “positive” and those with a 1 are “negative”.

To get access to the review data, do the following (which should feel similar to previous assign-
ments):

— Create a directory called assignment7 somewhere on your computer.

— Download the following file into your assignment7 directory and unzip it by double-clicking
on it:

http://www.cs.pomona.edu/~dkauchak/classes/csbla/assignments/assign7-starter.zip

— Delete the zip file. You should now have a folder called assignment7 with six files in it.

The dataset contains three pairs of files. For each pair, the .positive file contains all of the
positive reviews and the .negative all of the negative reviews. As with previous assignments,
to help in testing and debugging, I’ve provided simple.positive and simple.negative, which
only contain three examples per file and will be useful for illustrating how different functions work.
train.positive and train.negative contain the text examples that you should use to train your
model. If you open up train.positive you’ll see the first few examples are:

perhaps the perfect action thriller movie . funny , suspenseful dramatic packed
has it all

a well constructed thriller .
my favorite action movie yet !

i love this movie ! bought it on dvd when came out . it’s better than the
original , and jamie lee lindsey were great

To make life simpler for you, I've already preprocessed the data so that all you need to do is count
word occurrences. Specifically:

- I've already tokenized and lowercased all of the words. I left the punctuation characters in
just in case they’re indicative of a particular class (e.g., more use of exclamation points).
- I removed duplicate words from the reviews, so each review represents a set of words. You

can see this in the fourth example, where it originally read “I bought it on dvd...”

To evaluate our model, we’ll use test.positive and test.negative.

Maybe not so Naive Bayes

Implement the following functions that will build up our Naive Bayes classifier functionality.

Training

1. [3 points] Write a function called get_file_counts that takes as input a filename and returns
a dictionary with the number of times each word occurred in that file. Each line in the file
will contain an example. I've already done all of the preprocessing for you, so just use the
split function to split a line up into its individual words. For example:

>>> get_file_counts("simple.positive")
{’i’>: 3, ’loved’: 3, ’it’: 2, ’that’: 2, ’movie’: 1, ’hated’: 1}

2. [2 points] Write a function called counts_to_probs that takes a dictionary and a number
and generates a new dictionary with the same keys where each value has been divided by the
input number. For example:

>>> counts = get_file_counts("simple.positive")
>>> counts_to_probs(counts, 3)

{’i’: 1.0, ’loved’: 1.0, ’it’: 0.66, ’that’: 0.66, ’movie’: 0.33, ’
hated’: 0.33}

(I truncated the decimals so they’d fit better.)

Note that if you call this function with the word counts from a file and the number of lines
int the file you’ll get back the probabilities of each word (which is what we need!).

3. [1 point] Write a function called train model that takes as input a filename containing
examples and returns a dictionary with the word probabilities (p(word|label)). This should
be a very short function that mostly just uses the previous two functions.

>>> train_model("simple.positive")
{’i’>: 1.0, ’loved’: 1.0, ’it’: 0.66, ’that’: 0.66, ’movie’: 0.33, ’
hated’: 0.33}

Hint: we wrote a function in class for counting the number of lines in a file, which you may
use if that’s helpful.

Classifying

4. [3 points] Write a function called get_probability that takes as input two parameters, a
dictionary of word probabilities and a string (representing a review), and returns the prob-
ability of that review by multiplying the probabilities of each of the words in the review. A
few notes:

e To determine words, just split on whitespace (i.e., use split).

e Make sure to lowercase the words in the review before looking them up since our model
only has lowercase words.

e One of the key challenges with any probabilistic model is how to handle words that
you’ve never seen before. Like in class, we’re going to cheat a little bit. If you come
across a word in the review that you have never seen before (i.e., don’t have a probability
in your dictionary) then just assume its probability is a small constant. In our case, we’ll
use (1/11000 = 0.00009).

For example,

>>> pos_model = train_model("simple.positive")
>>> get_probability(pos_model, "I hated that class")
2.02020202020202e-05

The answer you get is:

p(i | pos) * p(hatelpos) * p(that | pos) * p(class|pos)

1.0 * 0.333 0.666 * 0.00009 0.00002

The first three words are found and the fourth is not so it is assigned the constant 1/11000
probability.

5. [2 points] Write a function called classify that takes three inputs: a string representing a
review, the positive model (i.e., a dictionary of word probabilities), and the negative model
(i.e., another dictionary of word probabilities). The function should return “positive” or
“negative” depending on which model has the highest probability for the review. Ties should
go to positive.

Again, most of the work should be done by previous functions.

6. [3 points] To make it easy to play with our model, write an interactive function called
sentiment_analyzer that takes two files as input, a positive examples file and a negative
examples file, in that order. The function should train a positive and negative model using
these files and then repeatedly ask the user to enter a sentence and then output the classifi-
cation of that sentence (as positive or negative). A blank line/sentence should terminate the
function.

For example, here’s a short transcript:

>>> sentiment_analyzer("train.positive", "train.negative")
Blank line terminates.

Enter a sentence: I like pizza

positive

Enter a sentence: I hate pizza

negative

Enter a sentence: I slipped on a banana
positive

Enter a sentence: I slipped on a bad banana
negative

Enter a sentence: computer science

positive

Enter a sentence:

>>>

Evaluation
Now that we have a working model, we should figure out how good it is. First, we can use a

quantitative measure. To do this, we’re going to classify our test examples and calculate what
proportion we get right (called the accuracy).

7. [4 points] Write a function called get_accuracy that takes four files as input in this order:

The positive test file (e.g., test.positive)
- The negative test file (e.g., test.negative)

The positive training file (e.g., train.positive)

The negative training file (e.g., train.negative)

The function should train the model (i.e., both positive and negative counts) and then classify
all of the test examples (both positive and negative) and keep track of the accuracy of the
model. The function should print out three scores: the accuracy on the positive test examples,
the accuracy on the negative test examples, and the accuracy on all of the test examples. For
example:

>>> get_accuracy("test.positive", "test.negative", "train.positive", "train.negative")

Positive accuracy: O.#####
Negative accuracy: O.#####
Total accuracy: O.#####

(I’ve hidden the actual values printed out since I want you to be surprised when you get
your code running :)

Advice:

- You can either write this as a single function or write helper function(s) to help you do
some of the work.

- This will be one of the longer functions we’ve written so make sure to think about what
you want to do and try and test as you go.

- Remember you can use print statements to help you understand what your code is
doing, but remove these before submitting your work.

- Try testing on the simple examples for debugging with a call like:

>>> get_accuracy("simple.positive", "simple.negative",
"simple.positive", "simple.negative")

Positive accuracy: 1.0

Negative accuracy: 0.6666666666666666

Total accuracy: 0.8333333333333334

(Testing on your training test like this isn’t a proper way of evaluating a model, but it’s
good for debugging purposes.)

8. [4 points] Include 1-2 short paragraphs (less than half a page, though), as either comments
or a triple quoted string, at the end of your file evaluating the quality of your Naive Bayes
model. Your discussion must include:

- The output of get_accuracy on the test examples and a discussion of these results.

- At least one positive and one negative example that you make up where the model makes
the wrong decision. Play with the interactive version to find these.

- A concrete discussion of why the model makes a mistake. This should include you
looking up the word probabilities in the model and trying to understand what word(s)
are causing it to make a mistake.

When you’re done
Make sure that your program is properly commented:
e You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.
e You should have comments delimiting the two sections.

e Each function should have an appropriate docstring.

e Include other miscellaneous comments to make things clear.
In addition, make sure that you’ve used good style. This includes:

- Following naming conventions, e.g., all variables and functions should be lowercase.
- Using good variable names.

- Good use of booleans. You should NOT have anything like:)

if boolean_expression == True:

or

if boolean_expression False:
instead use:

if boolean_expression:
or

if not (boolean_expression): # or some other way of negating the expression

- Proper use of whitespace, including indenting and use of blank lines to separate chunks of
code that belong together.

- Make sure that none of the lines are too long, i.e., cross the red line in Wing.

Submitting

You only need to submit your .py file (and not any of the starter that you downloaded). Submit
your assign?.py file online using the courses submission mechanism under “assign7”.

Grading
points
Training 6
Classifying 8
Evaluation 8
Comments, style 3
total ‘ 25 ‘

