

Admin

Assignment 3

Quiz \#1

- Q1: 28 (77\%)
- Q2: 32 (89%)
- Q3: 33 (92\%)
- Average: 30 (84%)

Parsing

Parsing is the field of NLP interested in
automatically determining the syntactic structure of a sentence
parsing can also be thought of as determining what sentences are "valid" English sentences

Parsing

We have a grammar, determine the possible parse tree(s)

Let's start with parsing with a CFG (no probabilities)

$S \rightarrow N P V P$	I eat sushi with tuna
$N P \rightarrow P R P$	
$N P \rightarrow N P P$	
$V P \rightarrow V N P$	
$V P \rightarrow V N P P P$	approaches?
$P P \rightarrow I N N$	algorithms?
$P R P \rightarrow 1$	
$V \rightarrow$ eat	

Parsing
Top-down parsing
\square ends up doing a lot of repeated work
\square doesn't take into account the words in the sentence until the end!
Bottom-up parsing
\square constrain based on the words
\square avoids repeated work (dynamic programming)
\square doesn't take into account the high-level structure until the end!
\square CKY parser

Top Down Parsing

Why is parsing hard?

Actual grammars are large

Lots of ambiguity!

- Most sentences have many parses
\square Some sentences have a lot of parses
\square Even for sentences that are not ambiguous, there is often ambiguity for subtrees (i.e. multiple ways to parse a phrase)

Why is parsing hard?

I saw the man on the hill with the telescope

What are some interpretations?
Structural Ambiguity Can Give Exponential Parses

I saw the man on the hill with the telescope

Dynamic Programming Parsing

To avoid extensive repeated work you must cache intermediate results, specifically found constituents

Caching (memoizing) is critical to obtaining a polynomial time parsing algorithm for CFGs

Dynamic programming algorithms based on both topdown and bottom-up search can achieve $O\left(n^{3}\right)$ recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods

CKY (Cocke-Kasami-Younger) algorithm based on bottom-up parsing and requires first normalizing the grammar.

Earley parser is based on top-down parsing and does not require normalizing grammar but is more complex.

These both fall under the general category of chart parsers which retain completed constituents in a chart

Parsing ambiguity

Parsing with PCFGs

How does this change our CKY algorithm? \square We need to keep track of the probability of a constituent

How do we calculate the probability of a constituent?
\square Product of the PCFG rule times the product of the probabilities of the sub-constituents (right hand sides)
\square Building up the product from the bottom-up

What if there are multiple ways of deriving a particular constituent?
\square max: pick the most likely derivation of that constituent

Probabilistic CKY

Include in each cell a probability for each non-terminal

Cell[i,i] must retain the most probable derivation of each constituent (non-terminal) covering words i through j

When transforming the grammar to CNF, must set production probabilities to preserve the probability of derivations

Generic PCFG Limitations

PCFGs do not rely on specific words or concepts, only general structural disambiguation is possible (e.g. prefer to attach PPs to Nominals)
\square Generic PCFGs cannot resolve syntactic ambiguities that require semantics to resolve, e.g. "ate with": fork vs. meatballs

Smoothing/dealing with out of vocabulary

MLE estimates are not always the best

