
2/20/19

1

PARSING
David Kauchak
CS159 – Spring 2019

Admin

Assignment 3

Quiz #1
¤ Q1: 28 (77%)
¤ Q2: 32 (89%)
¤ Q3: 33 (92%)
¤ Average: 30 (84%)

Parsing

Parsing is the field of NLP interested in
automatically determining the syntactic structure of
a sentence

parsing can also be thought of as determining what
sentences are “valid” English sentences

Parsing

We have a grammar, determine the possible parse tree(s)

Let’s start with parsing with a CFG (no probabilities)

S ® NP VP
NP ® PRP
NP ® N PP
VP ® V NP
VP ® V NP PP
PP ® IN N
PRP ® I
V ® eat
N ® sushi
N ® tuna
IN ® with

I eat sushi with tuna

approaches?
algorithms?

2/20/19

2

Parsing

Top-down parsing
¤ ends up doing a lot of repeated work
¤ doesn’t take into account the words in the sentence until the end!

Bottom-up parsing
¤ constrain based on the words
¤ avoids repeated work (dynamic programming)
¤ doesn’t take into account the high-level structure until the end!
¤ CKY parser

Parsing

Top-down parsing
¤ start at the top (usually S) and apply rules
¤ matching left-hand sides and replacing with right-hand sides

Bottom-up parsing
¤ start at the bottom (i.e. words) and build the parse tree up from there
¤ matching right-hand sides and replacing with left-hand sides

Parsing Example

S

VP

Verb NP

book Det Nominal

that Noun

flight

book that flight

Top Down Parsing

S

NP VP

Pronoun

2/20/19

3

Top Down Parsing

S

NP VP

Pronoun

book

X

Top Down Parsing

S

NP VP

ProperNoun

Top Down Parsing

S

NP VP

ProperNoun

book

X

Top Down Parsing

S

NP VP

Det Nominal

2/20/19

4

Top Down Parsing

S

NP VP

Det Nominal

book

X

Top Down Parsing

S

Aux NP VP

Top Down Parsing

S

Aux NP VP

book

X

Top Down Parsing

S

VP

2/20/19

5

Top Down Parsing

S

VP

Verb

Top Down Parsing

S

VP

Verb

book

Top Down Parsing

S

VP

Verb

book
X

that

Top Down Parsing

S

VP

Verb NP

2/20/19

6

Top Down Parsing

S

VP

Verb NP

book

Top Down Parsing

S

VP

Verb NP

book Pronoun

Top Down Parsing

S

VP

Verb NP

book Pronoun

X
that

Top Down Parsing

S

VP

Verb NP

book ProperNoun

2/20/19

7

Top Down Parsing

S

VP

Verb NP

book ProperNoun

X
that

Top Down Parsing

S

VP

Verb NP

book Det Nominal

Top Down Parsing

S

VP

Verb NP

book Det Nominal

that

Top Down Parsing

S

VP

Verb NP

book Det Nominal

that Noun

2/20/19

8

Top Down Parsing

S

VP

Verb NP

book Det Nominal

that Noun

flight

Bottom Up Parsing

book that flight

Bottom Up Parsing

book that flight

Noun

Bottom Up Parsing

book that flight

Noun

Nominal

2/20/19

9

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

X

Bottom Up Parsing

book that flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that flight

Noun Det

Nominal PP

Nominal

2/20/19

10

Bottom Up Parsing

book that flight

Noun Det

NP

Nominal

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

Nominal PP

Nominal

2/20/19

11

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

X

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

X

Bottom Up Parsing

book that

Verb Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

2/20/19

12

Det

Bottom Up Parsing

book that

Verb

VP

S

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

book that

Verb

VP

S

X
NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

X

2/20/19

13

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

NP

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

S

Parsing

Pros/Cons?
¤ Top-down:

n Only examines parses that could be valid parses (i.e. with an S on
top)

n Doesn’t take into account the actual words!

¤ Bottom-up:
n Only examines structures that have the actual words as the leaves
n Examines sub-parses that may NOT result in a valid parse!

2/20/19

14

Why is parsing hard?

Actual grammars are large

Lots of ambiguity!
¤ Most sentences have many parses
¤ Some sentences have a lot of parses
¤ Even for sentences that are not ambiguous, there is

often ambiguity for subtrees (i.e. multiple ways to parse
a phrase)

Why is parsing hard?

I saw the man on the hill with the telescope

What are some interpretations?

Structural Ambiguity Can Give Exponential Parses

Me See A man The telescope The hill

“I was on the hill that has a telescope
when I saw a man.”

“I saw a man who was on the hill
that has a telescope on it.”

“I was on the hill when I used the
telescope to see a man.”

“I saw a man who was on a hill and
who had a telescope.”

“Using a telescope, I saw a man who
was on a hill.”

. . .

I saw the man on the hill with the telescope

Dynamic Programming Parsing

To avoid extensive repeated work you must cache
intermediate results, specifically found constituents

Caching (memoizing) is critical to obtaining a
polynomial time parsing algorithm for CFGs

Dynamic programming algorithms based on both top-
down and bottom-up search can achieve O(n3)
recognition time where n is the length of the input
string.

2/20/19

15

Dynamic Programming Parsing Methods

CKY (Cocke-Kasami-Younger) algorithm based on
bottom-up parsing and requires first normalizing the
grammar.

Earley parser is based on top-down parsing and does
not require normalizing grammar but is more complex.

These both fall under the general category of chart
parsers which retain completed constituents in a chart

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

what does this cell
represent?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

all constituents spanning
1-3 or “the man with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

how could we figure this
out?

2/20/19

16

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

Key: rules are binary and
only have two constituents
on the right hand side

VP -> VB NP
NP -> DT NN

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “the” with any for
“man with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “the man” with any for
“with”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

?

What combinations do we need
to consider when trying to put
constituents here?

2/20/19

17

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film” with any for “the
man with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the” with any for
“man with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the man” with
any for “with trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film the man with”
with any for “trust”

2/20/19

18

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What if our rules
weren’t binary?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

See if we can make a new
constituent combining any
for “Film” with any for “the
man” with any for “with
trust”

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

What order should we fill
the entries in the chart?

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

Our dependencies are left
and down

2/20/19

19

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

From bottom to top, left to
right

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Cell[i,j] contains all
constituents covering
words i through j

Film the man with trust

Top-left along the
diagonals moving to the
right

CKY parser: unary rules

Often, we will leave unary rules
rather than converting to CNF

Do these complicate the algorithm?

Must check whenever we add a
constituent to see if any unary rules
apply

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust
S ® VP
VP ® VB NP
VP ® VP2 PP
VP2 ® VB NP
NP ® DT NN
NP ® NN
NP ® NP PP
PP ® IN NP
DT ® the
IN ® with
VB ® film
VB ® man
VB ® trust
NN ® man
NN ® film
NN ® trust

2/20/19

20

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

NN
NP
VB

DT

VB
NN
NP

IN

VB
NN
NP

S ® VP
VP ® VB NP
VP ® VP2 PP
VP2 ® VB NP
NP ® DT NN
NP ® NN
NP ® NP PP
PP ® IN NP
DT ® the
IN ® with
VB ® film
VB ® man
VB ® trust
NN ® man
NN ® film
NN ® trust

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

NN
NP
VB

S ® VP
VP ® VB NP
VP ® VP2 PP
VP2 ® VB NP
NP ® DT NN
NP ® NN
NP ® NP PP
PP ® IN NP
DT ® the
IN ® with
VB ® film
VB ® man
VB ® trust
NN ® man
NN ® film
NN ® trust

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VP2
VP
S

NP

NN
NP
VB

S ® VP
VP ® VB NP
VP ® VP2 PP
VP2 ® VB NP
NP ® DT NN
NP ® NN
NP ® NP PP
PP ® IN NP
DT ® the
IN ® with
VB ® film
VB ® man
VB ® trust
NN ® man
NN ® film
NN ® trust

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VP2
VP
S

NP

NP

NN
NP
VB

S ® VP
VP ® VB NP
VP ® VP2 PP
VP2 ® VB NP
NP ® DT NN
NP ® NN
NP ® NP PP
PP ® IN NP
DT ® the
IN ® with
VB ® film
VB ® man
VB ® trust
NN ® man
NN ® film
NN ® trust

2/20/19

21

CKY parser: the chart

i=
0

1

2

3

4

j= 0 1 2 3 4

Film the man with trust

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VP2
VP
S

NP

NP

S
VP
VP2

NN
NP
VB

S ® VP
VP ® VB NP
VP ® VP2 PP
VP2 ® VB NP
NP ® DT NN
NP ® NN
NP ® NP PP
PP ® IN NP
DT ® the
IN ® with
VB ® film
VB ® man
VB ® trust
NN ® man
NN ® film
NN ® trust

CKY: some things to talk about

After we fill in the chart, how do we know if there is a
parse?

¤ If there is an S in the upper right corner

What if we want an actual tree/parse?

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

S

VP

VB NP

Film the man with trust

NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

S

VP

VB NP

NP PP

Film the man with trust

NN
NP
VB

2/20/19

22

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

S

VP

VB NP

NP PP

Film the man with trust

DT NN IN NP

…

NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

Where do these
arrows/references come
from?

NN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

To add a constituent in a
cell, we’re applying a
rule

The references represent
the smaller constituents we
used to build this
constituent

S ® VPNN
NP
VB

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

To add a constituent in a
cell, we’re applying a
rule

The references represent
the smaller constituents we
used to build this
constituent

VP ® VB NPNN
NP
VB

2/20/19

23

CKY: retrieving the parse

i=
0

1

2

3

4

j= 0 1 2 3 4

DT

VB
NN
NP

IN

VB
NN
NP

NP

PP

VB2
VP
S

NP

NP

S

VP

Film the man with trust

What about ambiguous
parses?

NN
NP
VB

CKY: retrieving the parse

We can store multiple derivations of
each constituent

This representation is called a
“parse forest”

It is often convenient to leave it in
this form, rather than enumerate all
possible parses. Why?

CKY: some things to think about

S ® VP
VP ® VB NP
VP ® VB NP PP
NP ® DT NN
NP ® NN
…

S ® VP
VP ® VB NP
VP ® VP2 PP
VP2 ® VB NP
NP ® DT NN
NP ® NN
…

Actual grammarCNF

We get a CNF parse tree but want one for the
actual grammar

Ideas?

Parsing ambiguity

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN N

PPNP

VP

S
S ®NP VP
NP ® PRP
NP ®N PP
VP ®V NP
VP ®V NP PP
PP ® IN N
PRP ® I
V ® eat
N ® sushi
N ® tuna
IN ®with

How can we decide between these?

2/20/19

24

A Simple PCFG

S ® NP VP 1.0
VP ® V NP 0.7

VP ® VP PP 0.3
PP ® P NP 1.0

P ® with 1.0
V ® saw 1.0

NP ® NP PP 0.4
NP ® astronomers 0.1

NP ® ears 0.18
NP ® saw 0.04

NP ® stars 0.18
NP ® telescope 0.1

Probabilities!

= 1.0 * 0.1 * 0.7 * 1.0 * 0.4 * 0.18
* 1.0 * 1.0 * 0.18

= 0.0009072

= 1.0 * 0.1 * 0.3 * 0.7 * 1.0 * 0.18
* 1.0 * 1.0 * 0.18

= 0.0006804

Parsing with PCFGs

How does this change our CKY algorithm?
¤ We need to keep track of the probability of a constituent

How do we calculate the probability of a constituent?
¤ Product of the PCFG rule times the product of the

probabilities of the sub-constituents (right hand sides)
¤ Building up the product from the bottom-up

What if there are multiple ways of deriving a particular
constituent?

¤ max: pick the most likely derivation of that constituent

Probabilistic CKY

Include in each cell a probability for each non-terminal

Cell[i,j] must retain the most probable derivation of each
constituent (non-terminal) covering words i through j

When transforming the grammar to CNF, must set
production probabilities to preserve the probability of
derivations

2/20/19

25

Probabilistic Grammar Conversion

S → NP VP
S →Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 →Aux NP
S → book | include | prefer

0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me

0.1 0.02 0.02 0.06
NP → Houston | NWA

0.16 .04
NP → Det Nominal
Nominal → book | flight | meal | money

0.03 0.15 0.06 0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer

0.1 0.04 0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP → Det Nominal 0.60

What is the probability
of the NP?

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

NP → Det Nominal 0.60

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP → Verb NP 0.5

What is the probability
of the VP?

2/20/19

26

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

VP → Verb NP 0.5

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
=.032

2/20/19

27

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
.0024

=.000864

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
.0024

=.000864

S:.05*.5*
.000864

=.0000216

S:.03*.0135*
.032

=.00001296

S → VP PP 0.03

S → Verb NP 0.05

Which parse do we pick?

Probabilistic CKY Parser

Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
=.054

VP:.5*.5*.054
=.0135

S:.05*.5*.054
=.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
=.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
.0024

=.000864

S:.0000216
Pick most probable
parse, i.e. take max to
combine probabilities
of multiple derivations
of each constituent in
each cell

2/20/19

28

Generic PCFG Limitations

PCFGs do not rely on specific words or concepts, only
general structural disambiguation is possible (e.g.
prefer to attach PPs to Nominals)

¤ Generic PCFGs cannot resolve syntactic ambiguities that
require semantics to resolve, e.g. “ate with”: fork vs.
meatballs

Smoothing/dealing with out of vocabulary

MLE estimates are not always the best

