

Admin

How did assignment 1 go?

Assignment 2

Videos!

Independence

Independent or Dependent?

You catching a cold and a butterfly flapping its wings in Africa

For two independent variables, knowing the value of one does not change the probability distribution of the Miles per gallon and driving habits other variable
\square the result of the toss of a coin is independent of a roll of a dice

Height and longevity of life
\square price of tea in England is independent of the whether or not you get an A in NLP

Independent variables

How does independence affect our probability

 equations/properties?

If A and B are independent, written $A \perp B$
$\square P(A \mid B)=P(A)$

- $P(B \mid A)=P(B)$

What does that mean about $P(A, B)$?

Independent variables

How does independence affect our probability
equations/properties?

If A and B are independent, written $A \perp B$

- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$
- $P(A, B)=P(A \mid B) P(B)=P(A) P(B)$
- $P(A, B)=P(B \mid A) P(A)=P(A) P(B)$

Conditional Independence

Dependent events can become independent given certain other events

Examples,

- height and length of life
- "correlation" studies
- size of your lawn and length of life

htrp://xkcd.com/552

Conditional Independence

Dependent events can become independent given certain other events

Examples,

- height and length of life
- "correlation" studies
- size of your lawn and length of life

If A, B are conditionally independent of $\mathrm{C} \quad A \perp B \mid C$

- $P(A, B \mid C)=P(A \mid C) P(B \mid C)$
- $P(A \mid B, C)=P(A \mid C)$
- $P(B \mid A, C)=P(B \mid C)$
- but $P(A, B) \neq P(A) P(B)$

Assume independence
Sometimes we will assume two variables are independent (or conditionally independent) even though they're not
Why?
\square Creates a simpler model
$\square p(X, Y)$ many more variables than just $P(X)$ and $P(Y)$
\square May not be able to estimate the more complicated
model

Language modeling
What does natural language look like?
More specifically in NLP, probabilistic model
Two related questions:
$\square \mathrm{p}$ (sentence) - p("l like to eat pizza") - p ("pizza like I eat")
$\square \mathrm{p}($ word \| previous words) - p("pizza" \| "l like to eat") - p("garbage" \| "l like to eat") - p("run" \| "" like to eat")

Language modeling
How might these models be useful? Language generation tasks - machine translation - summarization - simplification - speech recognition ■... Text correction - spelling correction - grammar correction

Ideas?
p("I like to eat pizza") p("pizza like I eat") p("pizza" \| "I like to eat") p("garbage" \| "I like to eat") p("run" \| "l like to eat")

Probabilistic Language modeling

A probabilistic explanation of how the sentence was generated

Key idea:

\square break this generation process into smaller steps

- estimate the probabilities of these smaller steps
\square the overall probability is the combined product of the steps

Probabilistic Language modeling
A probabilistic explanation of how the sentence was generated
Key idea:
a break this generation process into smaller steps
\square estimate the probabilities of these smaller steps
\square the overall probability is the combined product of the
steps

Language modeling

I think today is a good day to be me

Google-"I think today is a good day to be me" \quad Search
Web \dagger Show options...
A No results found for "I think today is a good day to be me".

Language modeling is about dealing with data sparsity!

Language modeling
Two approaches: n-gram language modeling - Start at the beginning of the sentence - Generate one word at a time based on the previous words syntax-based language modeling - Construct the syntactic tree from the top down - e.g. context free grammar eventually at the leaves, generate the words Pros/cons?

Estimating probabilities
How do we find probabilities? $\quad \mathrm{P}$ (is \| think today)
Get real text, and start counting (MLE)!
\qquadP(is \|think today) $=\frac{\text { count(think today is) }}{\text { count(think today) }}$

Estimating from a corpus

1. Go through all sentences and count trigrams and bigrams

- usually you store these in some kind of data structure

2. Now, go through all of the trigrams and use the count and the bigram count to calculate MLE probabilities

- do we need to worry about divide by zero?

Applying a model

Given a new sentence, we can apply the model

```
p(Pomona College students are the best . ) = ?
                                    V
```

$\mathrm{p}($ Pomona | <start> <start>) *
p(College | <start> Pomona) *
p (students | Pomona College) *
\vdots
$\mathrm{p}($ <end> | . <end>) *

Generation examples

Bigrams

the wikipedia county , mexico .
maurice ravel. it is require that is sparta, where functions. most widely admired.
halogens chamiali cast jason against test site .

Generation examples

Unigram

are were that ères mammal naturally built describes jazz territory heteromyids film tenor prime live founding must on was feet negro legal gate in on beside. provincial san ; stephenson simply spaces stretched performance double-entry grove replacing station across to burma. repairing ères capital about double reached omnibus el time believed what hotels parameter jurisprudence words syndrome to ères profanity is administrators ères offices hilarius institutionalized remains writer royalty dennis, ères tyson, and objective, instructions seem timekeeper has ères valley ères " magnitudes for love on ères from allakaket , , ana central enlightened. to , ères is belongs fame they the corrected, . on in pressure $\%$ NUMBER\% her flavored ères derogatory is won metcard indirectly of crop duty learn northbound ères ères dancing similarity eres named ères berkeley . . off-scale overtime . each mansfield stripes dānu traffic ossetic and at alpha popularity town

Generation examples

Trigrams

is widespread in north africa in june \%NUMBER\% \%NUMBER\% units were built by with.
jewish video spiritual are considered ircd, this season was an extratropical cyclone .
the british railways 's strong and a spot .

Evaluation

We can train a language model on some data

How can we tell how well we're doing?
\square for example

- bigrams vs. trigrams
- 100 K sentence corpus vs. 100 M
-...

Calculating perplexity in practice

$$
\log \left(\sqrt[n]{\frac{1}{\prod_{i=1}^{n} p\left(w_{i} \mid w_{1 . i-1}\right)}}\right)=\log \left(\left(\frac{1}{\prod_{i=1}^{n} p\left(w_{i} \mid w_{1 . i-1}\right)}\right)^{1 / n}\right)
$$

$$
=\frac{\log \left(\frac{1}{\prod_{i=1}^{n} p\left(w_{i} \mid w_{1 . . i-1}\right)}\right)}{n}
$$

$$
=\frac{-\log \left(\prod_{i=1}^{n} p\left(w_{i} \mid w_{1 . i-1}\right)\right)}{n}
$$

Average logprob per word! $=-\frac{\sum_{i=1}^{n} \log p\left(w_{i} \mid w_{1 . i-1}\right)}{n}$

Calculating perplexity

$$
\begin{aligned}
P P\left(w_{1 . n}\right) & =\sqrt[n]{\frac{1}{\prod_{i=1}^{n} p\left(w_{i} \mid w_{1 . i-1}\right)}} \\
& =10^{-\frac{\sum_{i=1}^{n} \log _{10} p\left(w_{i} \mid w_{1 . i-1}\right)}{n}}
\end{aligned}
$$

- This is often how it's calculated (and how we'll calculate it)
- Avoid underflow from multiplying too many small probabilities together

Another view of perplexity

Weighted average branching factor

\square number of possible next words that can follow a word or phrase

- measure of the complexity/uncertainty of text (as viewed from the language models perspective)

Smoothing

What if our test set contains the following sentence, but one of the trigrams never occurred in our training data?
$P(I$ think today is a good day to be me) $=$ $P(I \mid$ <start> <start>) x
P(think | <start> I) x
P (today | I think) $x \quad$ If any of these has never been $P($ is \mid think today $x \quad$ seen before, $\mathrm{prob}=0$!
$P(a \mid$ today is) x
$P($ good \mid is a) x
...

Smoothing the estimates

Basic idea:
$\mathrm{p}(\mathrm{a} \mid \mathrm{xy})=1 / 3$? reduce
$p(d \mid x y)=2 / 3$? reduce
$p(z \mid x y)=0 / 3$? increase

Discount the positive counts somewhat

Reallocate that probability to the zeroes

Remember, it needs to stay a probability distribution

Other situations

$p(z \mid x y)=$?

Suppose our training data includes
$\ldots x$ y a \ldots (100 times)
$\ldots x$ y $d \ldots(100$ times
but never: xy z
Suppose our training data includes

$$
\begin{aligned}
& \ldots x \text { y } a \ldots \\
& \ldots x \text { y } \ldots \\
& \ldots \text { y } \mathrm{d} \ldots \\
& \ldots \text { y } \ldots \text { (} 300 \text { times) } \\
& \text { but never: } x \text { y } z
\end{aligned}
$$

Is this the same situation as before?

Add-one (Laplacian) smoothing				
xya	1	$1 / 3$	2	$2 / 29$
xyb	0	$0 / 3$	1	$1 / 29$
xyc	0	$0 / 3$	1	$1 / 29$
xyd	2	$2 / 3$	3	$3 / 29$
xye	0	$0 / 3$	1	$1 / 29$
\ldots				
xyz	0	$0 / 3$	1	$1 / 29$
Total $x y$	3	$3 / 3$	29	$29 / 29$

Add-one (Laplacian) smoothing				
What happens if we're now considering a vocabulary of 20,000 words?				
xya	1	1/3	2	2/29
xyb	0	0/3	1	1/29
xyc	0	0/3	1	1/29
xyd	2	2/3	3	3/29
xye	0	0/3	1	1/29
$x y z$	0	0/3	1	1/29
Total xy	3	3/3	29	29/29

Add-one (Laplacian) smoothing				
20,000 words, not 26 letters				
see the abacus	1	1/3	2	2/20003
see the abbot	0	0/3	1	1/20003
see the abduct	0	0/3	1	1/20003
see the above	2	2/3	3	3/20003
see the Abram	0	0/3	1	1/20003
see the zygote	0	0/3	1	1/20003
Total	3	3/3	20003	20003/20003
Any problem with this?				

Add-lambda smoothing				
A large dictionary makes novel events too probable.				
Instead of adding 1 to all counts, add $\lambda=0.01$? - This gives much less probability to novel events				
see the abacus	1	1/3	1.01	1.01/203
see the abbot	0	0/3	0.01	0.01/203
see the abduct	0	0/3	0.01	0.01/203
see the above	2	2/3	2.01	2.01/203
see the Abram	0	0/3	0.01	0.01/203
.			0.01	0.01/203
see the zygote	0	0/3	0.01	0.01/203
Total	3	3/3	203	

