

Admin

Assignment 7 out soon (due next Friday at 5 pm)

Quiz \#3 next Monday

- Text similarity -> this week (though, light on ML)

Final project

Final project

1. Your project should relate to something involving NLP
2. Your project must include a solid experimental evaluation
3. Your project should be in a pair or group of three. If you'd like to do it solo or in a group of four, please come talk to me.

Final project

date	time	description
$4 / 17$	in-class	Project proposal presentation
$4 / 21$	$11: 59 \mathrm{pm}$	Project proposal write-up
$4 / 28$	$11: 59 \mathrm{pm}$	Status report
$5 / 3$	5 pm	Paper draft
$5 / 8$	in-class	Final paper, code and presentation

Read the final project handout ASAP!

Start forming groups and thinking about what you want to do

Final project ideas
pick a text classification task

- evaluate different machine learning methods
- implement a machine learning method
- analyze different feature categories
n-gram language modeling
- implement and compare other smoothing techniques
- implement alternative models
parsing
lexicalized PCFG (with smoothing)
. n -best list generation
parse output reranking
- implement another parsing approach and compare
- parsing non-traditional domains (e.g. twitter)

EM
b try and implement IBM model 2
word-level translation models

Final project application areas

spelling correction \quad part of speech tagger text chunker dialogue generation | pronoun resolution |
| :--- |
| compare word similarity measures (more than the ones we looked at) |
| machine translation |
| information retrieval |
| information extraction |
| qummarization answering |
| speech recognition |

spelling correction
part of speech tagger
dialogue generation
pronoun resolution
compare word similarity measures (more than the ones we looked at)
machine translation
\square information retrieval
information extraction
summarization
\square speech recognition

Basic steps for probabilistic modeling	
	Probabilistic models
Step 1: pick a model	Which model do we use, i.e. how do we calculate p (feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

Naïve Bayes assumption
$p($ features, label $)=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y, x_{1}, \ldots, x_{j-1}\right)$
$p\left(x_{j} \mid y, x_{1}, x_{2}, \ldots, x_{j-1}\right)=p\left(x_{j} \mid y\right)$
What does this assume?

Naïve Bayes assumption
$p($ features, label $)=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y, x_{1}, \ldots, x_{j-1}\right)$

$$
p\left(x_{j} \mid y, x_{1}, x_{2}, \ldots, x_{j-1}\right)=p\left(x_{j} \mid y\right)
$$

Assumes feature i is independent of the the other
features given the label

Naïve Bayes model
$p($ features, l abel $)=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y, x_{1}, \ldots, x_{j-1}\right)$
$=p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right) \quad$ naive Bayes assumption
$p\left(x_{i} \mid y\right)$ is the probability of a particular feature value given the label
How do we model this? - for binary features (e.g., "banana" occurs in the text) - for discrete features (e.g., "banana" occurs x_{i} times) - for real valued features (e.g, the text contains x_{i} proportion of verbs)

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Which model do we use, i.e. how do we calculate p(feature, label)?
Step 2: figure out how to estimate the probabilities for the model	How do train the model, i.e. how to we we estimate the probabilities for the model?
Step 3 (optional): deal with overfitting	How do we deal with overfitting?

Generative Story
To classify with a model, we're given an example and we obtain
the probability
We can also ask how a given model would generate an example
This is the "generative story" for a model
Looking at the generative story can help understand the model
We also can use generative stories to help develop a model

Bernoulli NB generative story
$\qquad p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)$
What is the generative story for the NB model?

Bernoulli NB generative story

$$
p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)
$$

1. Pick a label according to $p(y)$
roll a biased, num_labels-sided die
2. For each feature:

Flip a biased coin:
if heads, include the feature
if tails, don't include the feature
What does this mean for text classification, assuming unigram features?

Bernoulli NB generative story
 $p(y) \prod_{j=1}^{m} p\left(w_{j} \mid y\right)$

1. Pick a label according to $p(y)$ roll a biased, num_labels-sided die
2. For each word in your vocabulary:

Flip a biased coin:
if heads, include the word in the text
if tails, don't include the word

Bernoulli NB
$p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right)$
Pros/cons?

Bernoulli NB
Pros
$\quad \square$ Easy to implement
\square Fast!
\square Can be done on large data sets
Cons
\square Naïve Bayes assumption is generally not true
\square Performance isn't as good as other models
\square For text classification (and other sparse feature
domains) the $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}=0\right.$ ly) can be problematic

	Probabilities		
	Bernoulli NB		Multinomial NB
1.	Pick a label according to $p(y)$ roll a biased, num_labels-sided die		Pick a label according to $p(y)$ roll a biased, num_labels-sided die
2.	For each word in your vocabulary: Flip a biased coin: if heads, include the word in the text if tails, don't include the word $\begin{array}{r} p(y) \prod_{j=1}^{m} p\left(x_{j} \mid y\right) \\ (1,1,1,0,0,1,0,0, \ldots) \end{array}$	2.	Keep drawing words from p (words $\mid y$) until document length has been reached $\begin{gathered} \text { ? } \\ (4,1,2,0,0,7,0,0, \ldots) \\ m, s i n \end{gathered}$

A digression: rolling dice

1. What is the probability of rolling a 1 and a 5 (in any order)?
2. Two 1 s and a 5 (in any order)?

3. Five 1 s and two 5 s (in any order)?
$1 / 4$
$1 / 8$
2

4

Back to words...
Why the digression?
$p\left(x_{1}, x_{2}, \ldots, x_{m} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)=\frac{n!}{\prod_{j=1}^{m} x_{j}!\prod_{j=1}^{m} \theta_{j}^{x_{j}}}$
Drawing words from a bag is the same as rolling a die!
number of sides = number of words in the vocabulary
Back to words...
Why the digression?
$p\left(x_{1}, x_{2}, \ldots, x_{m} \mid \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)=\frac{n!}{\prod_{j=1}^{m} x_{j}!} \prod_{j=1}^{m} \theta_{j}^{x_{j}}$
$p($ features,label $)=p(y) \frac{n!!}{\prod_{j=1}^{m} x_{j}!\prod_{j=1}^{m}\left(\theta_{y}\right)_{j}^{x_{j}}} \prod_{\theta_{j} \text { for class } y}$

Multinomial vs. Bernoulli?

Handles word frequency

Given enough data, tends to performs better

Multinomial vs. Bernoulli?
Handles word frequency

Multinomial vs. Bernoulli?

Handles word frequency
Given enough data, tends to performs better

htrp://www.cs.cmu.edu/-knigam/papers/multinomial-cacaiws98.pdf

Maximum likelihood estimation

Intuitive

Sets the probabilities so as to maximize the probability of the training data

Problems?

- Overfitting!
- Amount of data
- particularly problematic for rare events
- Is our training data representative

Basic steps for probabilistic modeling	
Step 1: pick a model	Probabilistic models Step 2: figure out how to estimate the probabilities for the model
Which model do we use, i.e. how do we calculate p(feature, label)?	
Step 3 (optional): deal with overfitting	How do train the model, i.e. how to we we estimate the probabilities for the model?

