

Admin

Assignment 6a

\square How'd it go?
\square Which option/extension are you picking?

Quiz \#3 next Monday

No hours today

Machine Learning is...

Machine Learning is...

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

> -- Ethem Alpaydin

The goal of machine learning is to develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest.
-- Kevin P. Murphy

The field of pattern recognition is concerned with the automatic discovery of regularities in data through the use of computer algorithms and with the use of these regularities to take actions.
-- Christopher M. Bishop

Machine Learning is...

Machine learning is about predicting the future based on the past. -- Hal Daume III

Machine Learning is...

Machine learning is about predicting the future based on the past. -- Hal Daume III

Regression Example
Price of a used car
x : car attributes (e.g. mileage) y : price

Regression applications
How many clicks will a particular website, ad, etc. get?
Predict the readability level of a document
Predict pause between spoken sentences?
Economics/Finance: predict the value of a stock
Car/plane navigation: angle of the steering wheel, acceleration, ...
\ldots

Supervised learning: ranking

NLP Ranking Applications

reranking N -best output lists (e.g. parsing, machine translation, ...)

Rank possible simplification options
flight search (search in general)
...

Unsupervised learning applications

learn clusters/groups without any label

- cluster documents
- cluster words (synonyms, parts of speech, ...)

compression

bioinformatics: learn motifs
...

Reinforcement learning	
left, right, straight, left, left, left, straight left, straight, straight, left, right, straight, straight	GOoD
left, right, straight, left, left, left, straight left, straight, straight, left, right, straight, straight	-38.5
Given a sequence of examples/states and a reward after completing that sequence, learn to predict the action to take in for an individual example/state	

Reinforcement learning example
hiltps：／／www．youtube．com／watch？$=$＝x／MM99xPQC8

Text classification		
	label	
三	spam	For this class，l＇m mostly going to focus on classification
三	not spam	I＇ll use text classification as a running example
三	not spam	

Other learning variations

What data is available：
－Supervised，unsupervised，reinforcement learning
■ semi－supervised，active learning，．．．

How are we getting the data： －online vs．offline learning

Type of model：
－generative vs．discriminative －parametric vs．non－parametric
Representing examples

Feature examples
\square ロRaw

Raw data	Features
三	Clinton said banana repeatedly last week on tv， ＂banana，banana，banana＂
三	Occurrence of words（unigrams）

Features
Clinton said banana
repeatedly last week on tv，
＂banana，banana，banana＂
$(1,1,1,0,0,1,0,0, \ldots)$

Occurrence of words（unigrams）

Lots of other features

POS: occurrence, counts, sequence

Constituents

Whether ' V lagra' occurred 15 times

Whether 'banana' occurred more times than 'apple'

If the document has a number in it
...

Features are very important, but we're going to focus on the model

Classification	revisited
Training data examples red, round, leaf, 3oz, ... green, round, no leaf, 4oz, ... yellow, curved, no leaf, 4oz, .. green, curved, no leaf, 5oz, ...	Test set label apple apple red, round, no leaf, $40 z, \ldots$? banana banana

Classification revisited		
Training data Test set examples		
red, round, leaf, 3oz, ... apple		
green, round, no leaf, 40 , \ldots	apple	red, round, no leaf, 4oz, ...?
yellow, curved, no leaf, 4oz, ... banana Learning is about generalizing from the training data green, curved, no leaf, $502, \ldots$ banana What does this assume about the training and test set?		

More technically...

We are going to use the probabilistic model of learning

There is some probability distribution over example/label pairs called the data generating distribution

Both the training data and the test set are generated based on this distribution

Probabilistic models

Probabilistic models define a probability distribution over features and labels:

Probabilistic models: classification

Probabilistic models define a probability distribution over features and labels:

Given an unlabeled example: yellow, curved, no leaf, boz predict the label
How do we use a probabilistic model for classification/prediction?

Probabilistic models

Probabilistic models define a probability distribution over features and labels:
yellow, curved, no leaf, 6oz, banana \longrightarrow probabilistic
yellow, curved, no leaf, 6oz, apple

For each label, ask for the probability under the model Pick the label with the highest probability

Probabilistic models

Probabilities are nice to work with
\square range between 0 and 1
\square can combine them in a well understood way

- lots of mathematical background/theory

Provide a strong, well-founded groundwork

- Allow us to make clear decisions about things like smoothing
- Tend to be much less "heuristic"
- Models have very clear meanings

Probabilistic models: big questions

1. Which model do we use, i.e. how do we calculate p(feature, label)?
2. How do train the model, i.e. how to we we estimate the probabilities for the model?
3. How do we deal with overfitting (i.e. smoothing)?

Step 1: picking a model

What we're really trying to do is model the data generating distribution, that is how likely the feature/label combinations are

Some math
p(features,label)
$=p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$
What rule?

Some math
$p($ features, label $)=p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$
$=p(y) p\left(x_{1}, x_{2}, \ldots, x_{m} \mid y\right)$
$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2}, \ldots, x_{m} \mid y, x_{1}\right)$
$=p(y) p\left(x_{1} \mid y\right) p\left(x_{2} \mid y, x_{1}\right) p\left(x_{3}, \ldots, x_{m} \mid y, x_{1}, x_{2}\right)$
$=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$

Step 1: pick a model

$$
p(\text { features,label })=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)
$$

So, far we have made NO assumptions about the data

$$
p\left(x_{m} \mid y, x_{1}, x_{2}, \ldots, x_{m-1}\right)
$$

How many entries would the probability distribution table have if we tried to represent all possible values and we had 7000 binary features?

Full distribution tables

x_{1}	x_{2}	x_{3}	\ldots	y	$p()$
0	0	0	\ldots	0	$*$
0	0	0	\ldots	1	$*$
1	0	0	\ldots	0	$*$
1	0	0	\ldots	1	$*$
0	1	0	\ldots	0	$*$
0	1	0	\ldots	1	$*$

All possible combination of features!

Table size: $2^{7000}=$?

Full distribution tables
Storing a table of that size is impossible! How are we supposed to learn/estimate each entry in the table?

Step 1: pick a model

$$
p(\text { features,label })=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)
$$

Naïve Bayes assumption
$p($ features, label $)=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$

So, far we have made NO assumptions about the data
Model selection involves making assumptions about the data
We've done this before, n -gram language model, parsing, etc.
These assumptions allow us to represent the data more compactly and to estimate the parameters of the model
Naive Bayes assumption
$\quad p($ features, label $)=p(y) \prod_{j=1}^{m} p\left(x_{i} \mid y, x_{1}, \ldots, x_{i-1}\right)$

$$
p\left(x_{i} \mid y, x_{1}, x_{2}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid y\right)
$$

Assumes feature i is independent of the the other
features given the label
Is this true for text, say, with unigram features?

