https://www.youtube.com/watch?v=bScsFi6DaoM

CORPUS ANALYSIS

David Kauchak
NLP - Spring 2019

Administrivia

Assignment 0

Assignment 1 out

- due Monday at 11 am (don't wait until the weekend!)
\square no code submitted, but will require coding
\square will require some command-line work

Reading

NLP models

How do people learn/acquire language?

NLP models

A lot of debate about how human's learn language
\square Rationalist (e.g. Chomsky)
\square Empiricist

From my perspective (and many people who study NLP)...
\square I don't care :)

Strong AI vs. weak AI: don't need to accomplish the task the same way people do, just the same task
\square Machine learning
\square Statistical NLP

Vocabulary

Word

\square a unit of language that native speakers can identify
\square words are the blocks from which sentences are made
Sentence
\square a string of words satisfying the grammatical rules of a language
Document
\square A collection of sentences
Corpus
\square A collection of related texts

Corpus examples

Any you've seen or played with before?

Corpus characteristics

What are some defining characteristics of corpora?

Corpus characteristics

monolingual vs. parallel
language
annotated (e.g. parts of speech, classifications, etc.)
source (where it came from)
size

Corpus examples

Linguistic Data Consortium

- http://www.Idc.upenn.edu/Catalog/byType.jsp

Dictionaries
\square WordNet - 206K English words

- CELEX2 - 365K German words

Monolingual text
\square Gigaword corpus

- 4M documents (mostly news articles)
- 1.7 trillion words
- 11 GB of data (4GB compressed)
\square Enron e-mails
- 517 K e-mails

Corpus examples

Monolingual text continued
\square Twitter

- Chatroom
- Many non-English resources

Parallel data
$\square \sim 10 \mathrm{M}$ sentences of Chinese-English and Arabic-English

- Europarl
- $\sim 25 \mathrm{M}$ sentence pairs with English with 21 different languages
\square 260K sentences of English Wikipedia—Simple English Wikipedia

Corpus examples

Annotated

- Brown Corpus
- $1 M$ words with part of speech tag
\square Penn Treebank
- 1 M words with full parse trees annotated
- Other treebanks
- Treebank refers to a corpus annotated with trees (usually syntactic)
- Chinese: 51 K sentences
- Arabic: 145K words
- many other languages...
- BLIPP: 300M words (automatically annotated)

Corpora examples

Many others...
\square Spam and other text classification
\square Google n-grams

- 2006 (24GB compressed!)
- 13M unigrams
- 300M bigrams
- 1B 3,4 and 5-grams
\square Speech
- Video (with transcripts)

Corpus analysis

Corpora are important resources

Often give examples of an NLP task we'd like to accomplish

Much of NLP is data-driven!

A common and important first step to tackling many problems is analyzing the data you'll be processing

Corpus analysis

What types of questions might we want to ask?

How many...

- documents, sentences, words

On average, how long are the:

- documents, sentences, words

What are the most frequent words? pairs of words?

How many different words are used?

Data set specifics, e.g. proportion of different classes?

Corpora issues

Somebody gives you a file and says there's text in it

Issues with obtaining the text?
\square text encoding
\square language recognition
\square formatting (e.g. web, xml, ...)
\square misc. information to be removed
■ header information

- tables, figures
- footnotes

A rose by any other name...

Word

\square a unit of language that native speakers can identify
\square words are the blocks from which sentences are made

Concretely:
\square We have a stream of characters
\square We need to break into words

- What is a word?
- Issues/problem cases?
\square Word segmentation/tokenization?

Tokenization issues: ‘

Finland's capital...

Tokenization issues: ‘

Finland's capital...

Finland
Finland 's
Finland 's
Finlands
Finland s
Finland's

What are the benefits/drawbacks?

Tokenization issues: ‘

Aren't we

Tokenization issues: ‘

Aren't we

Aren't
Arent

Are n't
Aren \dagger

Are not

Tokenization issues: hyphens

Hewlett-Packard
co-education
take-it-or-leave-it
state-of-the-art
lower-case

26-year-old

Tokenization issues: hyphens

Hewlett-Packard

co-education

Keep as is
merge together

- HewlettPackard
- stateoftheart

Split on hyphen

- lower case
- co education

What are the
benefits/drawbacks?
state-of-the-art
lower-case

More tokenization issues

Compound nouns: San Francisco, Los Angelos, ...

\square One token or two?

Numbers
\square Examples

- Dates: 3/12/91
- Model numbers: B-52
- Domain specific numbers: PGP key - 324a3df234cb23e
- Phone numbers: (800) 234-2333
- Scientific notation: 1.456 e-10

Tokenization: language issues

Lebensversicherungsgesellschaftsangestellter

'life insurance company employee'

Opposite problem we saw with English (San Francisco)

German compound nouns are not segmented

German retrieval systems frequently use a compound splitter module

Tokenization：language issues

莎拉波娃现在居住在美国东南部的佛罗里达。

Where are the words？

thisissue

Many character based languages（e．g．Chinese）have no spaces between words
－A word can be made up of one or more characters
\square There is ambiguity about the tokenization，i．e．more than one way to break the characters into words
\square Word segmentation problem
－can also come up in speech recognition

Word counts: Tom Sawyer

How many words?

- 71,370 total
$\square 8,018$ unique

Is this a lot or a little? How might we find this out?
\square Random sample of news articles: 11 K unique words

What does this say about Tom Sawyer?
\square Simpler vocabulary (colloquial, audience target, etc.)

Word counts

What are the most frequent words?

What types of words are most frequent?

Word	Frequency
the	3332
and	2972
a	1775
to	1725
of	1440
was	1161
it	1027
in	906
that	877
he	877
l	783
his	772
you	686
Tom	679
with	642

Word counts

8 K words in vocab
71 K total
occurrences
how many occur once? †wice?

Word Frequency	Frequency of frequency
1	3993
2	1292
3	664
4	410
5	243
6	199
7	172
8	131
9	82
10	91
$11-50$	540
$51-100$	99
>100	102

Zipf's "Law"

The frequency of the occurrence of a word is inversely proportional to its frequency of occurrence ranking

Their relationship is log-linear, i.e. when both are plotted on a log scale, the graph is a straight line

Zipf's law

At a high level:

- a few words occur very frequently
- a medium number of elements have medium frequency
\square many words occur very infrequently

Zipf's law

$$
f=C \frac{1}{r}
$$

The product of the frequency of words (f) and their rank (r) is approximately constant

Constant is corpus dependent, but generally grows roughly linearly with the amount of
 data

Zipf Distribution

Illustration by Jacob Nielsen

Zipf's law: Brown corpus

Zipf's law: Tom Sawyer

Word	Frequency	Rank
the	3332	1
and		2
\qquad	$f=C \frac{1}{r}$	

$$
\begin{aligned}
C & =f * r \\
& =3332
\end{aligned}
$$

$$
\begin{gathered}
f=3332 * \frac{1}{2} \\
=1666
\end{gathered}
$$

Zipf's law: Tom Sawyer

Word	Frequency	Renk
the	3332	2
and	2972	2

$$
\begin{aligned}
C & =f * r \\
& =3332
\end{aligned}
$$

$$
\begin{gathered}
f=3332 * \frac{1}{2} \\
=1666
\end{gathered}
$$

Zipf's law: Tom Sawyer

Word	Frequency	Rank
the	*****	1
and	2972	2
a	$?$	3
	$f=C \frac{1}{r}$	

$$
\begin{aligned}
C & =f * r \\
& =2972 * 2 \\
& =5944
\end{aligned}
$$

$$
\begin{gathered}
f=5944 * \frac{1}{3} \\
=1981
\end{gathered}
$$

Zipf's law: Tom Sawyer

Word	Frequency	Rank
the	$* * * * *$	1
and	2972	2
a	1775	3
	$f=C l l$	

$$
\begin{aligned}
C & =f * r \\
& =2972 * 2 \\
& =5944
\end{aligned}
$$

$$
\begin{gathered}
f=5944 * \frac{1}{3} \\
=1981
\end{gathered}
$$

Zipf's law: Tom Sawyer

Word	Frequency	Rank
he	877	10
friends	$?$	800
\qquad	$f=C \frac{1}{r}$	

$$
\begin{aligned}
C & =f * r \\
& =877 * 10 \\
& =8770
\end{aligned}
$$

$$
f=8770 * \frac{1}{800}
$$

$$
=10.96
$$

Zipf's law: Tom Sawyer

Word	Frequency	Rank
he friends	877 10	10
	$f=C \frac{1}{r}$	
	$f 00$	

$$
\begin{aligned}
C & =f * r \\
& =877 * 10 \\
& =8770
\end{aligned}
$$

$$
f=8770 * \frac{1}{800}
$$

$$
=10.96
$$

Zipf's law: Tom Sawyer

Word	Frequency	Rank	C=f*r
the	3332	1	3332
and	2972	2	5944
a	1775	3	5235
he	877	10	8770
but	410	20	8400
be	294	30	8820
Oh	116	90	10440
two	104	100	10400
name	21	400	8400
group	13	600	7800
friends	10	800	8000
family	8	1000	8000
sins	2	3000	6000
Applausive	1	8000	8000

What does this imply about C/zipf's law? How would you pick C?

Sentences

Sentence

\square a string of words satisfying the grammatical rules of a language

Sentence segmentation

- How do we identify a sentence?
- Issues/problem cases?
\square Approach?

Sentence segmentation: issues

A first answer:
\square something ending in a: . ? !
\square gets 90% accuracy

Dr. Dave gives us just the right amount of homework.

Abbreviations can cause problems

Sentence segmentation: issues

A first answer:
\square something ending in $\mathrm{a}:$. ? !
\square gets 90% accuracy

The scene is written with a combination of unbridled passion and sure-handed control: In the exchanges of the three characters and the rise and fall of emotions, Mr. Weller has captured the heartbreaking inexorability of separation.
sometimes: : ; and - might also denote a sentence split

Sentence segmentation: issues

A first answer:
\square something ending in a: . ?!
\square gets 90% accuracy
"You remind me," she remarked, "of your mother."

Quotes often appear outside the ending marks

Sentence segmentation

Place initial boundaries after: . ? !

Move the boundaries after the quotation marks, if they follow a break

Remove a boundary following a period if:
\square it is a known abbreviation that doesn't tend to occur at the end of a sentence (Prof., vs.)
\square it is preceded by a known abbreviation and not followed by an uppercase word

Sentence length

What is the average sentence length, say for news text?

Length	percent	cumul. percent
$1-5$	3	3
$6-10$	8	11
$11-15$	14	25
$16-20$	17	42
$21-25$	17	59
$26-30$	15	74
$31-35$	11	86
$36-40$	7	92
$41-45$	4	96
$46-50$	2	98
$51-100$	1	99.99
$101+$	0.01	100

