

Benefits of word-level model

Rarely used in practice for modern MT system

Maria no dió una botefada a la bruja verde

Two key side effects of training a word-level model:

- Word-level alignment
- $p(f \mid e)$: translation dictionary How do I get this?

| | | |
| :--- | :--- | :--- | :--- | :--- |

		nent
100 iterations		green house
p(casa \| green)	0.005	
p(verde \| green)	0.995	
p (la \| green)	0	
p (casa \| house)	~ 1.0	Why?
p (verde \| house)	~ 0.0	the house
p (la \| house)	~ 0.0	
p(casa \| the)	0.005	
p (verde \| the)	0	
p (la \| the)	0.995	

Word-level alignment

$\operatorname{alignment}(E, F)=\arg _{A} \max p(A, F \mid E)$

Which for IBM model 1 is:

$$
\operatorname{alignment}(E, F)=\arg _{A} \max \prod_{i=1}^{|F|} p\left(f_{i} \mid e_{a_{i}}\right)
$$

Given a trained model (i.e. $p(f \mid e)$ values), how do we find this?
Align each foreign word (f in F) to the English word (e in E) with highest $p(f \mid e)$

$$
a_{i}=\arg _{j: 1-|E|} \max p\left(f_{i} \mid e_{j}\right)
$$

Word-alignment Evaluation

The old man is happy. He has fished many times.

How good of an alignment is this? How can we quantify this?

Word-alignment Evaluation

System:
The old man is happy. He has fished many times.

El viejo está feliz porque ha pescado muchos veces.
Human
The old man is happy. He has fished many times.

Precision and recall!

Problems for Statistical MT

Preprocessing

Language modeling

Translation modeling

Decoding

Parameter optimization

Evaluation

Phrasal translation model

The models define probabilities over inputs

$$
p(f \mid e)
$$

| Morgen fliege ich nach Kanada zur Konferenz |
| :--- | :--- |

1. Sentence is divided into phrases

Phrasal translation model		
The models define probabilities over inputs $p(f \mid e)$		
Morgen fliege ich nach Kanada	zur Konferenz	

Phrasal translation model

The models define probabilities over inputs

$$
p(f \mid e)
$$

1. Sentence is divided into phrases
2. Phrase are translated (avoids a lot of weirdness from word-level model)
3. Phrases are reordered

	Phrase table
natuerlich	
Translation	Probability
of course	0.5
naturally	0.3
of course,	0.15
of course,	0.05

	Phrase table	
den Vorschlag		

Advantages of Phrase-Based

Many-to-many mappings can handle noncompositional phrases

Easy to understand

Local context is very useful for disambiguating

- "Interest rate" \rightarrow...
- "Interest in" \rightarrow...

The more data, the longer the learned phrases

- Sometimes whole sentences!

Syntax－based models

Benefits

－Can use syntax to motivate word／phrase movement
－Could ensure grammaticality

Two main types：
－p（foreign string｜English parse tree）
－p（foreign parse tree｜English parse tree）

Why always English parse tree？

Tree to string rules examples

1． DT （these）\rightarrow 这
VBP（include）\rightarrow 中包括
VBP （includes）\rightarrow 中包括
NNP（France）\rightarrow 法国
CC（and）\rightarrow 和
NNP（Russia）\rightarrow 俄罗斯
Contiguous phrase pair
$\mathrm{IN}(\mathrm{of}) \rightarrow$ 的
NP（NNS（astronauts））\rightarrow 宇航，员
PUNC（．）\rightarrow ．
$N P(x 0: D T, C D(7), N N S$（people）$\rightarrow x 0,7$ 人 $\mathrm{VP}(\mathrm{VBG}($ coming $), \mathrm{PP}(\mathrm{IN}($ from $), \mathrm{x0}: \mathrm{NP})) \rightarrow$ 来自 ， x 0 $\mathrm{IN}($ from $) \rightarrow$ 来自
$N P(x 0: N N P, x 1: C C, x 2: N N P) \rightarrow x 0, x 1, x 2$
$\mathrm{VP}(x 0: \mathrm{VBP}, \mathrm{x} 1: \mathrm{NP}) \rightarrow \mathrm{x} 0, x 1$
$\mathrm{S}(\mathrm{x0} 0: \mathrm{NP}, \mathrm{x} 1: \mathrm{VP}, \mathrm{x} 2: \mathrm{PUNC}) \rightarrow \mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2$
$N P(x 0: N P, x 1: V P) \rightarrow x 1$ ，的，$x 0$
NP（DT（＂the＂），x0：JJ，x1：NN）$\rightarrow x 0, x 1$
$\left\{\begin{array}{l}\text { Contiguous phrase pair } \\ \text { substitution rules } \\ \text { Higher－level rules } \\ \end{array}\right.$

Tree to string rules examples

DT（these）\rightarrow 这	Both VBP（＂include＂）and
VBP（include）\rightarrow 中包括	VBP（＂includes＂）will translate
VBP（includes）\rightarrow 中包括	to＂中包括＂in Chinese．
NNP（France）\rightarrow 法国	

CC （and）\rightarrow 和

NNP（Russia）\rightarrow 俄罗斯
$\mathrm{IN}(\mathrm{of}) \rightarrow$ 的
NP（NNS（astronauts））\rightarrow 宇航，员 PUNC（．）\rightarrow
NP（x0：DT，CD（7），NNS（people）\rightarrow x0，7人
VP（VBG（coming）， $\mathrm{PP}(\operatorname{IN}($ from $), x 0: N P)) \rightarrow$ 来自，x0 $\mathrm{IN}($ from $) \rightarrow$ 来自 NP（x0：NNP，x1：CC，x2：NNP）$\rightarrow x 0, x 1, x 2$ $\mathrm{VP}(x 0: V B P, x 1: N P) \rightarrow x 0, x 1$ $\mathrm{S}(\mathrm{x} 0: \mathrm{NP}, \mathrm{x} 1: \mathrm{VP}, \mathrm{x} 2: \mathrm{PUNC}) \rightarrow \mathrm{x0}, \mathrm{x} 1, \mathrm{x} 2$ $\mathrm{NP}(\mathrm{x} 0: \mathrm{NP}, \mathrm{x} 1: \mathrm{VP}) \rightarrow \mathrm{x} 1$ ，的， x 0 $\mathrm{NP}(\mathrm{DT}($＂the＂）， $\mathrm{x} 0: \mathrm{JJ}, \mathrm{x} 1: \mathrm{NN}) \rightarrow \mathrm{x0}, \mathrm{x} 1$

Tree Transformations

Tree Transformations

DT（these）\rightarrow 这

VBP（include）\rightarrow 中包括
VBP（includes）\rightarrow 中包括
NNP（France）\rightarrow 法国
CC（and）\rightarrow 和
N（of）\rightarrow（
$\mathrm{IN}($ of）\rightarrow 的
NP（NNS（astronauts））\rightarrow 宇航，员 PUNC（．）\rightarrow ．
NP（x0：DT，CD（7），NNS（people）\rightarrow x0，7人
$\mathrm{VP}(\mathrm{VBG}($ coming $), \mathrm{PP}(\mathrm{IN}($ from $), x 0: \mathrm{NP})) \rightarrow$ 来自， $\mathrm{x0}$ $\mathrm{IN}($ from $) \rightarrow$ 来自
$N P(x 0: N N P, x 1: C C, x 2: N N P) \rightarrow x 0, x 1, x 2$
$\mathrm{VP}(\mathrm{xO} 0: \mathrm{VBP}, \mathrm{x} 1: \mathrm{NP}) \rightarrow \mathrm{x} 0, \mathrm{x} 1$
$S(x 0: N P, x 1: V P, x 2: P U N C) \rightarrow x 0, x 1, x 2$
$\mathrm{NP}(\mathrm{x} 0: \mathrm{NP}, \mathrm{x} 1: \mathrm{VP}) \rightarrow \mathrm{x} 1$ ，的， x 0
$N P(D T(" t h e "), x 0: J J, x 1: N N) \rightarrow x 0, x 1$

Tree Transformations

Problems for Statistical MT
Preprocessing
Language modeling
Translation modeling
Decoding
Parameter optimization
Evaluation

Decoding

Of all conceivable English word strings, find the one maximizing $P(e) * P(f \mid e)$

Decoding is an NP-complete problem! (for many translation models)

What does this imply?

Decoding

Of all conceivable English word strings, find the one maximizing $P(e) * P(f \mid e)$

Decoding is an NP-complete problem! (for many translation models)

- Not guaranteed to find the max

Many different approaches to decoding

Problems for Statistical MT

Preprocessing
Language modeling
Translation modeling

Decoding

Parameter optimization

Evaluation

The Problem: Learn Lambdas

$$
\begin{aligned}
& p(e \mid f)=\frac{p(f \mid e) p(e)}{p(f)} \\
& =\frac{p(f \mid e)^{2} p\left(e e^{2_{2}}\right.}{\sum_{e} p\left(f \mid e e^{2}\right)^{2} \lambda_{2} p\left(e e^{)^{2}}\right.}
\end{aligned}
$$

$=\frac{\left.p\left(f \mid e^{\prime}\right)^{\lambda_{1}} p\left(e^{\prime}\right)^{\lambda_{1}} p\left(e^{\prime} \mid f\right)^{\lambda^{3} l} \operatorname{length} e^{\prime}\right)^{4^{4}} \ldots}{\sum_{e}}$
$=\frac{\exp \left(\lambda_{1} \log p(f \mid e)+\lambda_{2} \log p(e)+\lambda_{3} \log p(e \mid f)+\lambda_{4} \operatorname{length}(e) \ldots\right)}{\sum \operatorname{en}\left(\lambda_{1} \log (f \mid e)+\lambda_{2} \log \right.}$
$=\frac{\exp \left(\lambda_{1} \log p\left(f \mid e^{\prime}\right)+\lambda_{2} \log p\left(e^{\prime}\right)+\lambda_{3} \log p\left(e^{\prime} \mid f\right)+\lambda_{4} \operatorname{length}\left(e^{\prime}\right) \ldots\right)}{\operatorname{en}}$

$=\frac{\exp \left(\sum_{i} \lambda_{i} h_{i}(f, e)\right)}{\sum_{e} \exp \left(\sum_{i} \lambda_{i} h_{i}\left(f, e^{\prime}\right)\right)} \quad$| Given a data set with foreign/English |
| :--- |
| sentences, find the λ^{\prime} 's that: |
| • maximize the likelihood of the data |
| - maximize an evaluation criterion |

Problems for Statistical MT
Preprocessing

Language modeling

Translation modeling

Decoding

Parameter optimization
Evaluation

MT Evaluation

How do we do it?

What data might be useful?

Automatic Evaluation

Common NLP/machine learning/AI approach

BLEU Evaluation Metric

(Papineni et al, ACL-2002)

Basic idea:
Combination of n-gram precisions of varying size

What percentage of machine n-grams can be found in the reference translation?

Multiple Reference Translations

N -gram precision example

Candidate 1: It is a guide to action which ensures that the military always obey the commands of the party.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

What percentage of machine n-grams can be found in the reference translations? Do unigrams, bigrams and trigrams.

N -gram precision example

Candidate 1: It is a guide to action which ensures that the military always obey the commands of the party.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18

N -gram precision example

Candidate 1: It is a guide to action which ensures that the military
always obey the commands of the party.
Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18
Bigrams: 10/17

N -gram precision example

Candidate 1: It is a quide to action which ensures that the military -
always obey the commands of the party.
Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 17/18
Bigrams: 10/17
Trigrams: 7/16

N -gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

N-gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 12/14

N -gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.

Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 12/14
Bigrams: 4/13

N-gram precision example 2

Candidate 2: It is to ensure the army forever hearing the directions
guide that party commands.
Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

Unigrams: 12/14
Bigrams: 4/13
Trigrams: 1/12

N-gram precision

Candidate 1: It is a guide to action which ensures that the military always obey the commands of the party.

Unigrams: 17/18
Bigrams: 10/17
Trigrams: 7/16

Candidate 2: It is to ensure the army forever hearing the directions guide that party commands.
Unigrams: 12/14
Bigrams: 4/13
Trigrams: 1/12

N -gram precision example

Candidate 3: the
Candidate 4: It is a
Reference 1: It is a guide to action that ensures that the military will forever heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces always being under the command of the Party.
Reference 3: It is the practical guide for the army always to heed directions of the party.

What percentage of machine n-grams can be found in the reference translations? Do unigrams, bigrams and trigrams

BLEU Evaluation Metric

(Papineni et al, ACL-2002)

The An⿰亻̣̂eric̣an [?] internatiènal
airport and its the office alf
receives one calls self the sand
Arab rich business [?] and so on electronic mail, which sends out, The threàt will be able after public place and;:so on the airport to start the bioch in
alerts after the maintenance.

N-gram precision (score is between 0 \& 1)

- What percentage of machine n-grams can be found in the reference translation?
- Not allowed to use same portion of reference translation twice (can't cheat by typing out "the the the the the")

Brevity penalty

- Can't just type out single word "the" (precision 1.0!)
*** Amazingly hard to "game" the system (i.e., find a way to change machine output so that BLEU goes up, but quality doesn't)

BLEU Tends to Predict Human Judgments

Human Judgments

BLEU in Action

枪手被警方击毙。

he gunman was police kill
wounded police jaya of
the gunman was shot dead by the police．
the gunman arrested by police kill．
he gunmen were killed
was shot to death by the police al by the police
he ringer is killed by the police
ed $=$ word not matched （bad！）

BLEU in Action

枪手被警方击毙。
the gunman was shot to death by the police ．
the gunman was police kill
wounded police jaya of
the gunman was shot dead by the police
the gunman arrested by police kill．
the gunmen were killed ．
the gunman was shot to death by the police gunmen were killed by police ？SUB＞0 ？SUB＞0 al by the police．
the ringer is killed by the police
police killed the gunman．
（Foreign Original）
（Reference Translation）
\＃1
$\# 1$
$\# 2$
$\# 3$ $\# 3$
$\# 4$ \＃4 \＃5 \＃6
\#

BLEU in Action

BLEU: Problems?

Doesn't care if an incorrectly translated word is a name or a preposition

- gave it to Albright
- gave it at Albright
- gave it to altar
(reference)
(translation \#1)
(translation \#2)

What happens when a program reaches human level performance in BLEU but the translations are still bad?

- maybe sooner than you think ...

