

Admin

Quiz \#2

- Quartile 1: 23.25 (78\%)
- Median: 26 (87%)
- Quartile3: 28 (93\%)
\square Average: 24.8 (83%)

Assignments 3 and 5a graded (4b back soon)

Assignment 5

This decision boundary?

This decision boundary?

Three hidden nodes

NN decision boundaries

\square

Theorem 9 (Two-Layer Networks are Universal Function Approximators). Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximate F arbitrarily well. Namely, for all x in the domain of $F,|F(\boldsymbol{x})-\hat{F}(\boldsymbol{x})|<\boldsymbol{\epsilon}$.
'Or, in colloquial terms "two-layer networks can approximate any function.""

NN decision boundaries

More hidden nodes $=$ more complexity

Adding more layers adds even more complexity (and much more quickly)

Good rule of thumb:
number of 2-layer hidden nodes $\leq \frac{\text { number of examples }}{\text { number of dimensions }}$

Deep learning

WikipediA

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data by using a deep graph with multiple processing layers, composed of multiple linear and non-linear transformations.

Deep learning is part of a broader family of machine learning methods based on learning representations of data.

Deep learning

Key: learning better features that abstract from the "raw" data

Using learned feature representations based on large amounts of data, generally unsupervised

Using classifiers with multiple layers of learning

Deep learning
Growing field
Driven by: \quad Increase in data availability \quad Increase in computational power \quad Parallelizability of many of the algorithms Involves more than just neural networks (though, they're a very popular model)

word2vec

How many people have heard of it?

What is it?

Word representations generalized

Project words into a multi-dimensional "meaning" space
word $\square\left[x_{1}, x_{2}, \ldots, x_{d}\right]$

What is our projection for assignment 5?

Word representations generalized
$\left.\begin{array}{l}\text { Project words into a multi-dimensional "meaning" } \\ \text { space } \\ \text { word }\end{array}\right]\left[w_{1}, w_{2}, \ldots, w_{d}\right]$
Each dimension is the co-occurrence of word with w_{i}

Word representations

Project words into a multi-dimensional "meaning" space
word $\quad\left[x_{1}, x_{2}, \ldots, x_{d}\right]$

The idea of word representations is not new:

- Co-occurrence matrices
- Latent Semantic Analysis (LSA)

New idea: learn word representation using a taskdriven approach

Word representations

Project words into a multi-dimensional "meaning" space
word $\quad\left[x_{1}, x_{2}, \ldots, x_{d}\right]$

A prediction problem

I like to eat bananas with cream cheese

Predict what words are likely to occur in that context
Given a context of y ords
Predict what words are likely to occur in that context

A prediction problem

Any other word that didn't occur in that context

I like to eat bananas with cream cheese

input	prediction (negative)
___ like to eat	car
I___to eat bananas	snoopy
I like__eat bananas with	run
I like to__ bananas with cream	sloth
\ldots	\ldots

Encoding words
How can we input a "word" into a network?
INPuT
w(t-2) \square

"One-hot" encoding

For a vocabulary of V words, have V input nodes
All inputs are 0 except the for the one corresponding to the word

"One-hot" encoding

For a vocabulary of V words, have V input nodes

All inputs are 0 except the for the one corresponding to the word
apple

"One-hot" encoding

For a vocabulary of V words, have V input nodes

All inputs are 0 except the for the one corresponding to the word

Results				
vector $($ word 1$)-\operatorname{vector}($ word 2$)=\operatorname{vector}(w o r d 3)-X$ word 1 is to word 2 as word 3 is to X				
Type of relationship Common capital city All capital cities Currency City-in-state Man-Woman		Pair 1 Greece Kazakhstan kwanza Illinois sister	Wo Oslo Harare Iran Stockton grandson	Pair 2 Norway Zimbabwe rial California granddaughter

Results				
$\begin{aligned} & \text { vector(word } 1)-\operatorname{vector}(\text { word } 2)=\text { vector }(\text { word } 3)-X \\ & \text { word } 1 \text { is to word } 2 \text { as word3 is to } X \end{aligned}$				
Type of relationship	Word Pair 1		Word Pair 2	
Adjective to adverb Opposite Comparative Superlative Present Participle Nationality adjective Past tense Plural nouns Plural verbs	apparent possibly great easy think Switzerland walking mouse work	apparently impossibly greater easiest thinking Swiss walked mice works	rapid ethical tough lucky read Cambodia swimming dollar speak	rapidly unethical tougher luckiest reading Cambodian swam dollars speaks

Results			
vector(word 1$)-\operatorname{vector}($ word 2$)=\operatorname{vector}(w o r d 3)-X$ word 1 is to word 2 as word 3 is to X			
Newspapers			
New York San Jose	New York Times San Jose Mercury News	Baltimore Cincinnati	Baltimore Sun Cincinnati Enquirer
NHL Teams			
Boston Phoenix	Boston Bruins Phoenix Coyotes	Montreal Nashville	Montreal Canadiens Nashville Predators
NBA Teams			
Detroit Oakland	Detroit Pistons Golden State Warriors	Toronto Memphis	Toronto Raptors Memphis Grizzlies
Airlines			
Austria Belgium	Austrian Airlines Brussels Airlines	Spain Greece	Spainair Aegean Airlines
Company executives			
Steve Ballmer Samuel J. Palmisano	$\begin{aligned} & \text { Microsoft } \\ & \text { IBM } \end{aligned}$	$\begin{gathered} \text { Larry Page } \\ \text { Werner Vogels } \end{gathered}$	Google Amazon

Visualized
https://projector.tensorflow.org/

Other models: skip-gram
INPUT PROJECTION OUTPUT
word2vec

A model for learning word representations from large amounts of data

Has become a popular pre-processing step for learning a more robust feature representation

Models like word2vec have also been incorporated into other learning approaches (e.g. translation tasks)

[^0]
[^0]: word2vec resources
 \square https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
 \square https://code.google.com/archive/p/word2vec/
 \square https://deeplearning4i.org/word2vec
 \square https://arxiv.org/pdf/1301.3781v3.pdf

