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BACKPROPAGATION
David Kauchak
CS159 – Fall 2019

Admin

Assignment 5

Neural network

inputs

Individual 
perceptrons/neurons

Neural network

inputs
some inputs are 
provided/entered



3/13/19

2

Neural network

inputs

each perceptron computes and 
calculates an answer

Neural network

inputs

those answers become inputs 
for the next level

Neural network

inputs

finally get the answer after all 
levels compute

Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A neuron/perceptron

€ 

in = wi
i
∑ xi

€ 

∑

€ 

g(in)

activation function
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Activation functions

hard threshold:

sigmoid

tanh x

g(x) = 1
1+ e−x

! "# = %1 "' "# ≥ )
0 +,ℎ./0"1.

Training

Input x1

Input x2

?

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2?

?

?

?

?

T=?

T=?

T=?

How do we learn the weights?

Learning in multilayer networks

Challenge: for multilayer networks, we don’t know what the 
expected output/error is for the internal nodes!

expected output?

perceptron/
linear model

neural network

w w w

w w w

w wwwww

how do we learn these weights?

Backpropagation: intuition

Gradient descent method for learning weights by 
optimizing a loss function

1. calculate output of all nodes 

2. calculate the weights for the output layer based on 
the error

3. “backpropagate” errors through hidden layers
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Backpropagation: intuition

We can calculate the actual error here

Backpropagation: intuition

Key idea: propagate the 
error back to this layer

Backpropagation: intuition

error

w1
w2

w3

error for node is ~ wi * error

Backpropagation: intuition

~w3 * error

w4
w5

w6

Calculate as normal, but weight the error
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Backpropagation: the details

Gradient descent method for learning weights by 
optimizing a loss function

1. calculate output of all nodes 

2. calculate the updates directly for the output layer

3. “backpropagate” errors through hidden layers

loss = 1
2
(y− ŷ)2

x
∑ squared error

Backpropagation: the details

x1

xm

out

m: features/inputs

d: hidden nodes

hj: output from 
hidden nodes

h1

hd

Notation:

……

How many weights?

Backpropagation: the details

x1

xm

out

m: features/inputs

d: hidden nodes

hj: output from 
hidden nodes

h1

hd

Notation:

……

d weights: denote vk

v1

vd

Backpropagation: the details

x1

xm

out

m: features/inputs

d: hidden nodes

hj: output from 
hidden nodes

h1

hd

Notation:

……

How many weights?

v1

vd
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Backpropagation: the details

x1

xm

out

m: features/inputs

d: hidden nodes

hk: output from 
hidden nodes

h1

hd

Notation:

……

d * m: denote wkj

first index = hidden node
second index = feature

v1

vd

§ w23: weight from input 3 to hidden 
node 2

§ w4: all the m weights associated with 
hidden node 4

w11

w21

w31

wdm

Backpropagation: the details

Gradient descent method for learning weights by 
optimizing a loss function

1. calculate output of all nodes 

2. calculate the updates directly for the output layer

3. “backpropagate” errors through hidden layers

argminw,v
1
2
(y− ŷ)2

x
∑

Finding the minimum

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out?

Finding the minimum

How do we do this for a function?

w

loss
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One approach: gradient descent

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension

w

loss

One approach: gradient descent

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension

Approach:
¤ pick a starting point (w)

¤ repeat:
n move a small amount towards 

decreasing loss (using the 
derivative)

w

loss

One approach: gradient descent

Partial derivatives give us the 
slope (i.e. direction to move) in 
that dimension

Approach:
¤ pick a starting point (w)
¤ repeat:

n pick a dimension
n move a small amount in that 

dimension towards decreasing loss 
(using the derivative)

Output layer weights

out
h1

hd

…

v1

vd

how far from correct 
and which direction

slope of the activation 
function where input is at

size and direction of the 
feature associated with 
this weight

vk = vk + (y− f (v ⋅h)) f '(v ⋅h)hk
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Output layer weights

out
h1

hd

…

v1

vd

how far from correct 
and which direction

(y− f (v ⋅h))> 0

(y− f (v ⋅h))< 0
?

vk = vk + (y− f (v ⋅h)) f '(v ⋅h)hk

Output layer weights

out
h1

hd

…

v1

vd

how far from correct 
and which direction

(y− f (v ⋅h))> 0

(y− f (v ⋅h))< 0

prediction < label:  

prediction > label:  

increase the weight

decrease the weight

bigger difference = bigger change

vk = vk + (y− f (v ⋅h)) f '(v ⋅h)hk

Output layer weights

out
h1

hd

…

v1

vd

slope of the activation 
function where input is at

bigger step

smaller step

smaller step

vk = vk + (y− f (v ⋅h)) f '(v ⋅h)hk

Output layer weights

out
h1

hd

…

v1

vd

size and direction of the 
feature associated with 
this weight

vk = vk + (y− f (v ⋅h)) f '(v ⋅h)hk
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Backpropagation: the details

Gradient descent method for learning weights by 
optimizing a loss function

1. calculate output of all nodes 

2. calculate the updates directly for the output layer

3. “backpropagate” errors through hidden layers

argminw,v
1
2
(y− ŷ)2

x
∑

Backpropagation: hidden layer

= −(y− f (v ⋅h)) f '(v ⋅h)hk = −(y− f (v ⋅h)) f '(v ⋅h)vk f '(wk ⋅ x)x j

output layer hidden layer

error erroroutput 
activation 
slope

output 
activation 
slope

input
inpu
t

x1

xm

out

h1

hd

……

v1

vd

w11

w21

w31

wdm weight from hidden layer 
to output layer

slope of 
wx

dloss
dvk

=
d
dvk

1
2
(y− ŷ)2

"

#
$

%

&
'

=
d
dvk

1
2
(y− f (v ⋅h)2

#

$
%

&

'
(

= (y− f (v ⋅h)) d
dvk

y− f (v ⋅h)( )

dloss
dwkj

=
d
dwkj

1
2
(y− ŷ)2

"

#
$

%

&
'

=
d
dwkj

1
2
y− f (v ⋅h)2( )#

$
%

&

'
(

= (y− f (v ⋅h)) d
dwkj

y− f (v ⋅h)( )

= −(y− f (v ⋅h)) d
dwkj

f (v ⋅h)

= −(y− f (v ⋅h)) f '(v ⋅h) d
dwkj

v ⋅h

= −(y− f (v ⋅h)) d
dvk

f (v ⋅h)

= −(y− f (v ⋅h)) f '(v ⋅h) d
dvk

v ⋅h

= −(y− f (v ⋅h)) f '(v ⋅h)hk

= −(y− f (v ⋅h)) f '(v ⋅h) d
dwkj

vkhk

= −(y− f (v ⋅h)) f '(v ⋅h)vk
d
dwkj

hk

= −(y− f (v ⋅h)) f '(v ⋅h)vk
d
dwkj

f (wk ⋅ x)

= −(y− f (v ⋅h)) f '(v ⋅h)vk f '(wk ⋅ x)
d
dwkj

wk ⋅ x

= −(y− f (v ⋅h)) f '(v ⋅h)vk f '(wk ⋅ x)x j

There’s a bit of math to 
show this, but it’s mostly 
just calculus…

Learning rate

Output layer update:
vk = vk +ηhk (y− f (v ⋅h)) f '(v ⋅h)

wkj = wkj +ηx j f '(wk ⋅ x)vk f '(v ⋅h)(y− f (v ⋅h))
Hidden layer update:

• Adjust how large the updates we’ll make (a parameter to 
the learning approach – like lambda for n-gram models)

• Often will start larger and then get smaller  
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Backpropagation implementation

for some number of iterations:
randomly shuffle training data
for each example:

- Compute all outputs going forward
- Calculate new weights and modified errors at output 

layer 
- Recursively calculate new weights and modified errors on 

hidden layers based on recursive relationship
- Update model with new weights

Many variations

Momentum: include a factor in the weight update to keep moving in the 
direction of the previous update

Mini-batch:
¤ Compromise between online and batch
¤ Avoids noisiness of updates from online while making more educated 

weight updates

Simulated annealing:
¤ With some probability make a random weight update
¤ Reduce this probability over time

…

Challenges of neural networks?

Picking network configuration

Can be slow to train for large networks and large 
amounts of data

Loss functions (including squared error) are generally 
not convex with respect to the parameter space


