

Admin

Assignment 4

Quiz \#2 Wednesday
\square Same rules as quiz \#1

- First 30 minutes of class - Open book and notes

Assignment 5 out soon

Quiz \#2

Topics
\square Linguistics 101
\square Parsing

- Grammars, CFGs, PCFGs
- Top-down vs. bottom-up
- CKY algorithm
- Grammar learning
- Evaluation
- Improved models
\square Text similarity
- Will also be covered on Quiz \#3, though

Text Similarity

A common question in NLP is how similar are texts
score: $\operatorname{sim}(\overline{\bar{\Xi}}, \overline{\bar{\Xi}})=$?

TF-IDF
One of the most common weighting schemes $\begin{aligned} & \text { TF }=\text { term frequency } \\ & \text { IDF }=\text { inverse document frequency } \\ & \qquad \mathrm{a}_{i}^{\prime}=a_{i}^{a_{i}} \times \log N / \mathrm{df}_{i} \end{aligned}$ We can then use this with any of our similarity measures!

Vector based word

A
al: When
a2: the
a3: defendant
a4: and
a5: courthouse

Normalized distance measures

Cosine

$$
\operatorname{sim}_{\mathrm{cos}}(A, B)=A \cdot B=\sum_{i=1}^{n} a_{i}^{\prime} b_{i}^{\prime}=\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}}}
$$

L2

$$
\operatorname{dist}_{L 2}(A, B)=\sqrt{\sum_{i=1}^{n}\left(a_{i}^{\prime}-b_{i}^{\prime}\right)^{2}}
$$

L1
a' and b' are length normalized versions of

$$
\operatorname{dist}_{L 1}(A, B)=\sum_{i=1}^{n}\left|a_{i}^{\prime}-b_{i}^{\prime}\right|
$$ the vectors

Word similarity
How similar are two words?
score: $\operatorname{sim}\left(w_{1}, w_{2}\right)=$?

rank: $w \quad$\begin{tabular}{lll}

\quad

w_{1}

w_{2}

w_{3}
\end{tabular}\quad applications?

list: w_{1} and w_{2} are synonyms

Word overlap problems

A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.

B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

Word similarity applications
General text similarity
Thesaurus generation

Automatic evaluation

Text-to-text
\square paraphrasing
\square summarization
\square machine translation
information retrieval (search)

Word similarity

How similar are two words?
score: $\operatorname{sim}\left(w_{1}, w_{2}\right)=?$

rank:	W	$?$	W_{1}
W_{2}	ideas? useful resources?		
		W_{3}	

list: w_{1} and w_{2} are synonyms

Character-based similarity

$\operatorname{sim}($ turned, truned $)=$?

How might we do this using only the words (i.e. no outside resources?

Word similarity

Four categories of approaches (maybe more)

- Character-based
- turned vs. truned
- cognates (night, nacht, nicht, natt, nat, noc, noch)
\square Semantic web-based (e.g. WordNet)
\square Dictionary-based
- Distributional similarity-based
- similar words occur in similar contexts

Character-based similarity
$\operatorname{sim}(t u r n e d$, truned) $=?$
How might we do this using only the words (i.e.
no outside resources?

Edit distance (Levenshtein distance)

The edit distance between w_{1} and w_{2} is the minimum number of operations to transform w_{1} into w_{2}

Operations:
\square insertion
\square deletion
\square substitution
EDIT(turned, truned) = ?
EDIT(computer, commuter) = ?
EDIT(banana, apple) = ?
EDIT(wombat, worcester) = ?

Edit distance
$\begin{aligned} & \text { EDIT(turned, truned) }=2 \\ & \text { o delete u } \\ & \text { a insert u } \end{aligned}$
$\begin{aligned} & \text { EDIT(computer, commuter) }=1 \\ & \text { replace } p \text { with } m \end{aligned}$
$\begin{aligned} & \text { EDIT(banana, apple) }=5 \\ & \text { - delete b } \\ & \text { replace } n \text { with } p \\ & \text { replace a with } p \\ & \text { r replace } n \text { with } \mathrm{I} \\ & \text { a replace a with e } \end{aligned}$
EDIT(wombat, worcester) = 6

Better edit distance Are all operations equally likely? \square No
Improvement: give different weights to different operations \square replacing a for e is more likely than z for y
Ideas for weightings?
\square Learn from actual data (known typos, known similar words)
\square Intuitions: phonetics
\square Intuitions: keyboard configuration

Vector character-based word similarity

WordNet relations

\square synonym
\square antonym
\square hypernyms
\square hyponyms
\square holonym
\square meronym
\square troponym
\square entailment
\square (and a few others)

WordNet relations

synonym $-X$ and Y have similar meaning
antonym - X and Y have opposite meanings
hypernyms - subclass

- beagle is a hypernym of dog
hyponyms - superclass
- dog is a hyponym of beagle
holonym - contains part
- car is a holonym of wheel
meronym - part of
- wheel is a meronym of car

WordNet relations

troponym - for verbs, a more specific way of doing an action
\square run is a troponym of move

- dice is a troponym of cut
entailment - for verbs, one activity leads to the next
\square sleep is entailed by snore
(and a few others)

WordNet: dog
Noun - $\underline{\underline{S}:(n)}$ dog, domestic dog, Canis familiaris (a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds) "the dog barked all night" - $\underline{\text { S }}$: (n) frump, dog (a dull unattractive unpleasant girl or woman) 'she got a reputation as a frump"; "she's a real dog " - S: (n) dog (informal term for a man) "you lucky dog" - $\frac{\mathrm{S}: ~(\mathrm{n})}{}$ cad, bounder, blackguard, dog, hound, heel (someone who is morally reprehensible) "you dirty dog" - S: (n) frank, frankfurter, hotdog, hot dog, dog, wiener, wienerwurst, weenie (a smooth-textured sausage of minced beef or pork usually smoked; often served on a bread roll) - S: (n) pawl, detent, click, dog (a hinged catch that fits into a notch of a ratchet to move a wheel forward or prevent it from moving backward) - $\mathrm{S}:(\mathrm{n})$ andiron, firedog. dog. dog-iron (metal supports for logs in a fireplace) "the andirons were too hot to touch"
Verb - S: (v) chase, chase after, trail, tail, tag, give chase, dog, go after, track (go after with the intent to catch) "The policeman chased the mugger down the alley"; "the dog chased the rabbit"

dNet: dog
- S: (n) dog, domestic dog, Canis familiaris (a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds) "the dog barked all night ${ }^{"}$ - direct hyponym / full hyponym - part meronym - member holonym - direct hypernym / inherited hypernym / sister term
- direct hyponym / full hyponym - S: $^{\text {: }}$ (n) puppy (a young dog) - S: (n) pooch, doggie, doggy, barker, bow-wow (informal terms for dogs) - $\underline{\text { S}}$: (n) cur, mongrel, mutt (an inferior dog or one of mixed breed) - S: (n) lapdog (a dog small and tame enough to be beld in the lap) - S: (n) toy dog, toy (any of several breeds of very small dogs kept purely as pets) - $\underline{\text { S: }}$ (n) hunting dog (a dog used in hunting game) - S: (n) working dog (any of several breeds of usually large powerful dogs bred to work as draft animals and guard and guide dogs) - S: (n) dalmatian, coach dog, carriage dog (a large breed having a smooth white coat with black or brown spots; originated in Dalmatia) - $\underline{\mathrm{S}}$: (n) basenii (small smooth-haired breed of African origin having a tightly curled tail and the inability to bark) - $\mathbf{S}^{\text {: }}$ (n) pug, pug-dog (small compact smooth-coated breed of Asiatic origin having a tightly curled tail and broad flat wrinkled muzzle)

WordNet similarity measures

path length doesn't work very well

Some ideas:
\square path length scaled by the depth (Leacock and Chodorow, 1998)

With a little cheating:

- Measure the "information content" of a word using a corpus: how specific is a word?
- words higher up tend to have less information content
- more frequent words (and ancestors of more frequent words) tend to have less information content

Word similarity
Four general categories - Character-based - turned vs. truned - cognates (night, nacht, nicht, natt, nat, noc, noch) - Semantic web-based (e.g. WordNet) \square Dictionary-based \square Distributional similarity-based - similar words occur in similar contexts

Dictionary-based similarity
Utilize our text similarity measures $\operatorname{sim}($ dog, beagle $)=$ $\operatorname{sim}($ One of a breed of small hounds having long ears, short legs, and a usually black, tan, and white coat. Any carnivore of the family Canidae, having prominent canine teeth and, in the wild state, a long and slender muzzle, a deep-chested muscular body, a bushy tail, and large, erect ears. Compare canid.

Dictionary + WordNet
WordNet also includes a "gloss" similar to a
dictionary definition
Other variants include the overlap of the word senses
as well as those word senses that are related (e.g.
hypernym, hyponym, etc.)
ם incorporates some of the path information as well
\square Baneriee and Pedersen, 2003

Corpus-based

The Beagle is a breed of small to medium-sized dog. A member of the Hound Group, it is similar in appearance to the Foxhound but smaller, with shorter leg

Beagles are intelligent, and are popular as pets because of their size, even temper, and lack of inherited health problems.

Dogs of similar size and purpose to the modern Beagle can be traced in Ancient Greece[2] back to around the 5th century BC.

From medieval times, beagle was used as a generic description for the smaller hounds, though these dogs differed considerably from the modern breed.

In the 1840s, a standard Beagle type was beginning to develop: the distinction between the North Country Beagle and Southern

Corpus-based: feature extraction

The Beagle is a breed of small to medium-sized dog. A member of the Hound Group,
it is similar in appearance to the Foxhound but smaller, with shorter leg

We'd like to utilize our vector-based approach

How could we we create a vector from these occurrences?

- collect word counts from all documents with the word in it
\square collect word counts from all sentences with the word in it
- collect all word counts from all words within \boldsymbol{X} words of the word
\square collect all words counts from words in specific relationship: subjectobject, etc.

Word-context co-occurrence vectors ,

The Beagle is a breed of small to medium-sized dog. A member of the Hound Group
it is similar in appearance to the Foxhound but smaller, with shorter leg
Beagles are intelligent, and are popular as pets because of their size, even temper, and lack of inherited health problems.

Dogs of similar size and purpose to the modern Beagle can be traced in Ancient Greece[2] back to around the 5 th century BC.

From medieval times, beagle was used as a generic description for the smaller hounds, though these dogs differed considerably from the modern breed.

In the 1840s, a standard Beagle type was beginning to develop: the distinction between the North Country Beagle and Southern

Word-context co-occurrence vectors

The Beagle is a breed	the:	2
	is:	1
Beagles are intelligent, and	a:	2
to the modern Beagle can be traced	breed:	1
	are:	1
From medieval times, beagle was used as	intelligent:	1
	and:	1
1840 s, a standard Beagle type was beginning	to:	1
	modern:	1

Often do some preprocessing like lowercasing and removing stop words

Another feature weighting		
Feature weighting ideas given this additional information?		
sim (context_vector(dog), context_vector(beagle))		
$\substack{\text { the: } \\ \text { is: }}$		${ }_{1}$
${ }_{\text {breeds }}^{\text {ar }}$	$\stackrel{\text { a: }}{\text { breed: }}$	${ }_{1}$
	$\underset{\substack{\text { areil } \\ \text { inteligent }}}{\text { a }}$	1
		1
	${ }_{\text {modern: }}$...	1

Another feature weighting

count how likely feature f_{i} and word w are to occur together \square incorporates co-occurrence
\square but also incorporates how often w and f_{i} occur in other instances
$\operatorname{sim}($ context_vector(dog), context_vector(beagle))

Does IDF capture this?

Not really. IDF only accounts for f_{i} regardless of w

Mutual information

A bit more probability ©

$$
I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

When will this be high and when will this be low?

Mutual information

A bit more probability -

$$
I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

if x and y are independent (i.e. one occurring doesn't impact the other occurring) then:

$$
p(x, y)=
$$

Mutual information

A bit more probability ()

$$
I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

if they are dependent then:

$$
\begin{aligned}
& p(x, y)=p(x) p(y \mid x)=p(y) p(x \mid y) \\
& I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(y \mid x)}{p(y)}
\end{aligned}
$$

Mutual information

A bit more probability \odot

$$
I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

if x and y are independent (i.e. one occurring doesn't impact the other occurring) then:

$$
p(x, y)=p(x) p(y)
$$

What does this do to the sum?

Mutual information
$I(X, Y)=\sum_{x} \sum_{y} p(x, y) \operatorname{lo}\left(\frac{p(y \mid x)}{p(y)}\right.$
What is this asking?
When is this high?
How much more likely are we to see y
given x has a particular value!

\(\left.$$
\begin{array}{|c}\text { Point-wise mutual information } \\
\text { Mutual information } \\
I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}\end{array}
$$ \begin{array}{l}How related are two

variables (i.e. over all

possible values/events)\end{array}\right\}\)| Point-wise mutual information |
| :--- |

PMI weighting	
Mutual information is often used for feature selection in many problem areas PMI weighting weights co-occurrences based on their correlation (i.e. high PMI)	

