
1/24/19

1

REGULAR EXPRESSIONS
David Kauchak
NLP – Fall 2019

Regular expressions

Regular expressions are a very powerful tool to do string
matching and processing

Allows you to do things like:
¤ Tell me if a string starts with a lowercase letter, then is

followed by 2 numbers and ends with “ing” or “ion”
¤ Replace all occurrences of one or more spaces with a single

space
¤ Split up a string based on whitespace or periods or commas

or …
¤ Give me all parts of the string where a digit is proceeded

by a letter and then the ‘#’ sign

http://xkcd.com/208/

Regular expressions: literals

We can put any string in a regular expression
¤ /test/

n matches any string that has “test” in it
¤ /this class/

n matches any string that has “this class” in it
¤ /Test/

n case sensitive: matches any string that has “Test” in it

1/24/19

2

Regular expressions: character classes

A set of characters to match:
¤ put in brackets: []
¤ [abc] matches a single character a or b or c

What would the following match?
/[Tt]est/ any string with “Test” or “test” in it

Regular expressions: character classes

A set of characters to match:
¤ put in brackets: []
¤ [abc] matches a single character a or b or c

Can use - to represent ranges
n [a-z] is equivalent to
n [A-D] is equivalent to
n [0-9] is equivalent to

Regular expressions: character classes

A set of characters to match:
¤ put in brackets: []
¤ [abc] matches a single character a or b or c

Can use - to represent ranges
n [a-z] is equivalent to [abcdefghijklmnopqrstuvwxyz]
n [A-D] is equivalent to [ABCD]
n [0-9] is equivalent to [0123456789]

Regular expressions: character classes

For example:
/[0-9][0-9][0-9][0-9]/

matches any four digits, e.g. a year

Can also specify a set NOT to match:
^ means all characters EXCEPT those specified

¤ [^a] all characters except ‘a’

¤ [^0-9] all characters except numbers
¤ [^A-Z] ???

1/24/19

3

Regular expressions: character classes

For example:
/[0-9][0-9][0-9][0-9]/

matches any four digits, e.g. a year

Can also specify a set NOT to match:
^ means all characters EXCEPT those specified

¤ [^a] all characters except ‘a’

¤ [^0-9] all characters except numbers
¤ [^A-Z] not an upper case letter (be careful, this will match
any character that’s not uppercase, not just letters

Regular expressions: character classes

Meta-characters (not always available)
¤ \w - word character (a-zA-Z_0-9)
¤ \W - non word-character (i.e. everything else)
¤ \d - digit (0-9)
¤ \s - whitespace character (space, tab, endline, …)
¤ \S - non-whitespace
¤ \b matches a word boundary (whitespace, beginning

or end of line)
¤ . matches any character

What would the following match?

/19\d\d/
¤ would match any 4 digits starting with 19

/\s\s/
¤ matches anything with two adjacent whitespace

characters (spaces, tabs, etc)

/\s[aeiou]..\s/
¤ any three letter word that starts with a vowel

Regular expressions: repetition

* matches zero or more of the preceding character
/ba*d/
matches any string with:

n bd

n bad
n baad
n baaad

/A.*A/
matches any string starts and ends with A

+ matches one or more of the preceding character
/ba+d/
matches any string with

n bad

n baad
n baaad

n baaaad

1/24/19

4

Regular expressions: repetition

? zero or 1 occurrence of the preceding
/fights?/
matches any string with “fight” or “fights” in it

{n,m} matches n to m inclusive
/ba{3,4}d/
matches any string with

n baaad
n baaaad

Regular expressions:
beginning and end
^ marks the beginning of the line
$ marks the end of the line

/test/ test can occur anywhere

/^test/ must start with test

/test$/ must end with test

/^test$/ ???

Regular expressions:
beginning and end
^ marks the beginning of the line
$ marks the end of the line

/test/ test can occur anywhere

/^test/ must start with test

/test$/ must end with test

/^test$/ must be exactly test

Regular expressions: repetition revisited

What if we wanted to match:
This is very interesting
This is very very interesting
This is very very very interesting

Would /This is very+ interesting/ work?
¤ No… + only corresponds to the ‘y’
¤ /This is (very)+interesting/

Repetition operators only apply to a single character.
Use parentheses to group a string of characters.

1/24/19

5

Regular expressions: disjunction

| has the lowest precedence and can be used
/cats|dogs/

matches:
n cats
n dogs

does NOT match:
n catsogs

Regular expressions: disjunction

We want to match:
I like cats
I like dogs

Does /^I like cats|dogs$/ work?
No! Matches:

n I like cats
n dogs

Solution?

Regular expressions: disjunction

We want to match:
I like cats
I like dogs

/^I like (cats|dogs)$/
matches:

n I like cats
n I like dogs

Some examples

All strings that start with a capital letter

IP addresses
¤ 255.255.122.122

Matching a decimal number

All strings that end in ‘ing’

All strings that end in ‘ing’ or ‘ed’

All strings that begin and end with the same character

1/24/19

6

Some examples

All strings that start with a capital letter
/^[A-Z]/

IP addresses
/\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b/

Matching a decimal number
/[-+]?[0-9]*\.?[0-9]+/

All strings that end in ‘ing’
/ing$/

All strings that end in ‘ing’ or ‘ed’
/ing|ed$/

Regular expressions: memory

All strings that begin and end with the same character

Requires us to know what we matched already

()
¤ used for precedence
¤ also records a matched grouping, which can be referenced

later

/^(.).*\1$/
¤ all strings that begin and end with the same character

Regular expression: memory

/She likes (\w+) and he likes \1/

What would this match?

Regular expression: memory

/She likes (\w+) and he likes \1/
She likes bananas and he likes bananas

She likes movies and he likes movies
…

1/24/19

7

Regular expression: memory

/She likes (\w+) and he likes \1/

We can use multiple matches
/She likes (\w+) and (\w+) and he also likes \1 and \2/

Regular expressions: substitution

Most languages also allow for substitution
s/banana/apple/

substitute first occurrence banana for apple

s/banana/apple/g
substitute all occurrences (globally)

s/^(.*)$/\1 \1/
???

s/\s+/ /g
???

Regular expressions: substitution

Most languages also allow for substitution
s/banana/apple/

substitute first occurrence banana for apple

s/banana/apple/g
substitute all occurrences (globally)

s/^(.*)$/\1 \1/
duplicate the string, separated by a space

s/\s+/ /g
substitute multiple spaces to a space

Regular expressions by language

Java: as part of the String class
String s = “this is a test”
s.matches(“test”)
s.matches(“.*test.*”)
s.matches(“this\\sis .* test”)
s.split(“\\s+”)
s.replaceAll(“\\s+”, “ “);

Be careful, matches must match the whole string (i.e.
an implicit ^ and $)

file:///s+
file:///s+

1/24/19

8

Regular expressions by language

Java: java.util.regex
Full regular expression capabilities
Matcher class: create a matcher and then can use it

String s = “this is a test”
Pattern pattern = Pattern.compile(“is\\s+”)
Matcher matcher = pattern.matcher(s)

• matcher.matches()
• matcher.find()
• matcher.replaceAll(“blah”)
• matcher.group()

Regular expressions by language

Python:
import re

s = “this is a test”
p = re.compile(“test”)
p.match(s)

p = re.compile(“.*test.*”)
re.split(‘\s+’, s)
re.sub(‘\s+’, ‘ ‘, s)

Regular expressions by language

perl:
$s = “this is a test”
$s =~ /test/
$s =~ /^test$/
$s =~ /this\sis .* test/
split /\s+/, $s
$s =~ s/\s+/ /g

Regular expression by language

grep
¤ command-line tool for regular expressions (general

regular expression print/parser)
¤ returns all lines that match a regular expression
¤ grep “@” twitter.posts
¤ grep “http:” twiter.posts
¤ can’t used metacharacters (\d, \w), use [] instead
¤ Often want to use “grep –E” (for extended syntax)

1/24/19

9

Regular expression by language

sed
¤ another command-line tool that uses regular

expressions to print and manipulate strings
¤ very powerful, though we’ll just play with it
¤ Most common is substitution:

n sed “s/ is a / is not a /g” twitter.posts
n sed “s/ */ /g” twitter.posts

n sed doesn’t have +, but does have *

¤ Can also do things like delete all that match, etc.

Regular expression resources

General regular expressions:
¤ Ch 2.1 of the book
¤ http://www.regular-expressions.info/

n good general tutorials
n many language specific examples as well

Java
¤ http://download.oracle.com/javase/tutorial/essential/regex/
¤ See also the documentation for java.util.regex

Python
¤ http://docs.python.org/howto/regex.html
¤ http://docs.python.org/library/re.html

Regular expression resources

Perl
¤ http://perldoc.perl.org/perlretut.html
¤ http://perldoc.perl.org/perlre.html

grep
¤ See the write-up at the end of Assignment 1
¤ http://www.panix.com/~elflord/unix/grep.html

sed
¤ See the write-up at the end of Assignment 1
¤ http://www.grymoire.com/Unix/Sed.html
¤ http://www.panix.com/~elflord/unix/sed.html

http://www.regular-expressions.info/
http://download.oracle.com/javase/tutorial/essential/regex/
http://docs.python.org/library/re.html
http://docs.python.org/library/re.html
http://perldoc.perl.org/perlretut.html
http://perldoc.perl.org/perlre.html
http://www.panix.com/~elflord/unix/grep.html
http://www.grymoire.com/Unix/Sed.html
http://www.panix.com/~elflord/unix/sed.html

