
4/16/17	

1	

MASTERMIND: LAST
DETAILS
David Kauchak
CS52 – Spring 2017

Admin

Assignment 7

Assignment 8

Midterm

Course registration

Key heuristic

guess guess guess …

all codes not yet guessed

The one that minimizes the maximum remaining candidates

Max (codemaker response): assume we get the response with the largest
remaining candidate set

Min (our guess): pick the one that, worst case, results in the smallest
candidate set

max

min

How do we calculate this?

Key heuristic

guess guess guess …

all codes not yet guessed

The one that minimizes the maximum remaining candidates

max

min

For all codes not yet guessed:
 Consider all possible responses:
 Calculate the size of the remaining
 candidates if we guessed that code
 and got that response

select response
with largest
remaining for
that code

max
min

select
code with
smallest
max

4/16/17	

2	

Game tree

We can precompute the entire tree of possibilities

Expensive upfront to compute

Playing becomes fast

Game tree

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)
codemaker
response

[Red, Red, Green] (“best” first guess)

1 candidates
remaining 4 3 0 6 4 1 6 2

Game tree

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)
codemaker
response

[Red, Red, Green] (“best” first guess)

1 candidates
remaining 4 3 0 6 4 1 6 2

Recurse!

Game tree

(0,0)

[Blue, Blue, Blue]

Parent: [Red, Red, Green]
(26 guesses
 1 candidate answer)

4/16/17	

3	

Game tree

(0,0)

[Blue, Blue, Blue]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 0 1 0 0

codemaker
response

candidates
remaining

What now?

Parent: [Red, Red, Green]
(26 guesses
 1 candidate answer)

Game tree

(0,0)

[Blue, Blue, Blue]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 0 1 0 0

codemaker
response

candidates
remaining

Lose Lose Lose Lose Lose Lose Lose Lose Win

Use lose to indicate we don’t have any options
left (this shouldn’t happen if we use a
reasonable strategy)

Parent: [Red, Red, Green]
(26 guesses
 1 candidate answer)

Game tree

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)
codemaker
response

[Red, Red, Green] (“best” first guess)

1 candidates
remaining 4 3 0 6 4 1 6 2

Game tree

(0,1)
(26 guesses
 4 candidate answers)

[Green, Blue, Blue]

Parent: [Red, Red, Green]

4/16/17	

4	

Game tree

(0,1)
[Green, Blue, Blue]

Parent: [Red, Red, Green]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 1 1 1 1 candidates
remaining

What now?

(26 guesses
 4 candidate answers)

Game tree

(0,1)
[Green, Blue, Blue]

Parent: [Red, Red, Green]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 1 1 1 1 candidates
remaining

Lose Lose Lose Lose Win Lose ?

(26 guesses
 4 candidate answers)

Game tree

(0,1)
[Green, Blue, Blue]

Parent: [Red, Red, Green]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 1 1 1 1 candidates
remaining

Lose Lose Lose Lose Win Lose
Recurse

(26 guesses
 4 candidate answers)

Building the game tree

If 0 options then Lose

If 1 option and the response was (num_pegs, 0) then Win

Otherwise, build another Tree:
-  Guess = one that minimizes the maximum remaining

candidates over all responses
-  Break ties by 1) those that are still valid codes and 2)

found first in candidate (valid) list

-  Recurse on responses

4/16/17	

5	

Representing the game tree

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)
codemaker
response

[Red, Red, Green]

How do we store this tree?

Representing the game tree

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)
codemaker
response

[Red, Red, Green]

Representing the game tree

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

[Red, Red, Green]

knuth_tree list

code

Representing the game tree

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

[Red, Red, Green]

knuth_tree list

code

The responses aren’t explicitly stored in the tree

There is an implicit ordering to the subtrees that correspond to these

4/16/17	

6	

Representing the game tree

[Blue, Blue, Blue]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 0 1 0 0

codemaker
response

candidates
remaining

Lose Lose Lose Lose Lose Lose Lose Lose Win

Write some SML to create this tree.

Representing the game tree

[Blue, Blue, Blue]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 0 1 0 0

codemaker
response

candidates
remaining

Lose Lose Lose Lose Lose Lose Lose Lose Win

Write some SML to create this tree.

Representing the game tree

[Blue, Blue, Blue]

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (2,0) (3,0)

0 0 0 0 0 0 1 0 0

codemaker
response

candidates
remaining

Lose Lose Lose Lose Lose Lose Lose Lose Win

Step ([Blue, Blue, Blue], [Lose, Lose, Lose, Lose, Lose, Lose, Lose, Lose, Win]);

A simple example

What is the type signature of this function?

What does it do?

4/16/17	

7	

A simple example

knuth_tree -> (code * knuth_tree)

Returns the next code and then always chooses the
first element in the knuth tree (i.e. associated with
response (0,0))

Midterm

SML
!  datatypes (with non-zero constructors, recursive datatypes)
!  mutual recursion
!  handling exceptions

Binary numbers

!  signed representation
!  adding
!  shifting

Parsing: EBNF grammars

Circuits

!  general ideas (building circuits, truth tables, etc.)
!  minterm expansion
!  specific circuits (decoders, multiplexers)

Midterm

Encryption
! encryption/decryption
! modular arithmetic

Resources:

! We will provide you with the graphical pictures for the
gates.

! Like the previous midterms, you may bring one single-
sided, 8.5" x 11" piece of paper with notes.

Course registration

