

Admin
Assignment 7
CS52 mixer

3 colors, 3 pegs

3 Colors: Red, Green, Blue
3 pegs: [__ , __ , _]

How many different codes?

2 colors, 3 pegs (colorspegs $=3^{3}$)		

Nailive approach (assignment 3)		

Naïve approach (assignment 3)

$\left.\begin{array}{|ccc|}\hline & & \\ \text { Nailive approach (assignment 3) } \\ \text { Guess 1: [Red, Red, Red] } & & \text { Response } \\ \text { (codemaker) }\end{array}\right)$

Naïve approach (assignment 3)

What would our naïve approach guess next?	
[Green, Green, Green]	
[Green, Green, Blue]	[Blue, Green, Green]
[Breen, Blue, Green, Blue]	
[Green, Blue, Blue]	[Blue, Blue, Green]
[Blue, Blue, Blue]	

Naïve approach (assignment 3)
Exact Inexact
Guess 2: [Green, Green, Green] Response? (codemaker)
[Green, Green, Green] [Blue, Green, Green] [Green, Green, Blue] [Blue, Green, Blue]
[Green, Blue, Green] [Blue, Blue, Green] [Green, Blue, Blue] [Blue, Blue, Blue]

Naïve approach (assignment 3)		
		Exact Inexact
Guess 2: [Green, Gr	Response? (codemaker)	10
	een, Green]	[Blue, Green, Green]
	een, Blue]	[Blue, Green, Blue]
	e, Green]	[Blue, Blue, Green]
	e, Blue]	[Blue, Blue, Blue]
Must have one green: removed 5.		

Naïve approach (assignment 3)

Naïve approach (assignment 3)

Guess 3: [Green, Blue, Blue]	Response? (codemaker)

Naive approach (assignment 3)		
Exact Inexact		
Guess 3: [Green, Blue, Blue]	Response? (codemaker)	12
		[Blue, Green, Blue]
		[Blue, Blue, Green]
[Green, Blue, Blue]		
Only 1!		

Naïve approach (assignment 3)

What would our naïve approach guess next?
[Blue, Green, Blue]
[Blue, Blue, Green]

Naïve approach (assignment 3)

Guess 4: [Blue, Green, Blue]	Response? (codemaker)	
	[Blue, Green, Blue]	
	[Blue, Blue, Green]	

Naive approach (assignment 3)		
Guess 5: [Blue, Blue, Green]	Exact Inexact Response? (codemaker)	3

Naïve approach (assignment 3)

It took us 5 guesses.
Mastermind as adversarial search

We're the codebreaker (i.e. the person trying to guess the code)

Guess 1: [Red, Red, Red]
Guess 2: [Green, Green, Green]
Guess 3: [Green, Blue, Blue]
Guess4: [Blue, Green, Blue]
Guess 5: [Blue, Blue, Green]

Can we do better (less guesses)?

Mastermind as adversarial search
We're the codebreaker (i.e. the person trying to guess the code)
Guess 1: [Red, Red, Red] Guess 2: [Green, Green, Green] Guess 3: [Green, Blue, Blue] Guess4: [Blue, Green, Blue] Guess 5: [Blue, Blue, Green]
We can guess any code that we haven't previously guessed!
o For our last guess, we must guess the code
o For the other guesses, our goal is to gather information

Mastermind as adversarial search

On our turn we could guess any code not already guessed

all codes not yet guessed			
guess	guess	\ldots	guess

Challenge: we don't know what response we will get for a given guess

But we know we will get a response

Improved approach		
		Exact Inexact
Guess 1: [Red, Red, Green]		
[Red, Red, Red]	[Green,	[Blue, Red, Red]
[Red, Red, Green]	[Green,	[Blue, Red, Green]
[Red, Red, Blue]	[Green,	[Blue, Red, Blue]
[Red, Green, Red]	[Green,	[Blue, Green, Red]
[Red, Green, Green]	[Green,	[Blue, Green, Green]
[Red, Green, Blue]	[Green,	[Blue, Green, Blue]
[Red, Blue, Red]	[Green,	[Blue, Blue, Red]
[Red, Blue, Green]	[Green,	[Blue, Blue, Green]
[Red, Blue, Blue]	[Green,	[Blue, Blue, Blue]

Improved approach

		Exact Inexact	
Guess 1: [Red, Red, Green]		Response? (codemaker)	1

| | | |
| :--- | :--- | :--- | Improved approach

Improved approach	
Guess 2: [Red, Blue, Blue] $\begin{aligned} & \text { Response? } \\ & \text { React Inexact } \\ & \text { Redemaker }\end{aligned}$	
$\begin{array}{lll} & & \text { [Blue, Red, Blue] } \\ & \text { [Green, Green, Green] }\end{array}$ [Blue, Green, Green] ${ }^{\text {a }}$	

Improved approach		
Guess 2: [Red, Blue, Blue]		Exact Inexact
	Response? (codemaker)	11
		[Blue, Red, Blue]
[Green, Green, Green]		[Blue, Green, Green]
[Red, Blue, Blue] [Green, Blue, Green] [Blue, Blue, Green]		
Which ones can we eliminate?		

| Improved approach (3 colors, 3 pegs) |
| :---: | :---: |
| Naïve approach
 Guess 1: [Red, Red, Red]
 Guess 2: [Green, Green, Green]
 Guess 3: [Green, Blue, Blue]
 Guess 4: [Blue, Green, Blue]
 Guess 5: [Blue, Blue, Green] Improved approach
 Guess 1: [Red, Red, Green]
 Guess 2: [Red, Blue, Blue]
 Guess 3: [Blue, Blue, Green]
 Guaranteed: at most 5
 On average: 3.30 3 guesses |

Improved approach (6 colors, 4 pegs)

For 6 colors and 4 pegs:
Naïve approach
\square Worst case: 9 guesses
\square On average: 5.765 guesses

Improved approach

- Worst case: 5 guesses

ㅁ On average: 4.476

Improved approach
Published by Donald Knuth in 1977
https://sakai.claremont.edu/access/content/group/
CX_mtg_94136/resources/knuth-mastermind.pdf

Key heuristic
The one that minimizes the maximum remaining candidates Max (codemaker response): assume we get the response with the largest remaining candidate set Min (our guess): pick the one that, worst case, results in the smallest candidate set How do we calculate this?

A more efficient solution

	$\left\{\begin{array}{l}\text { For all codes not yet guessed: } \\ \left.\max \left\{\begin{array}{l}\text { Consider all possible responses: } \\ \begin{array}{l}\text { Calculate the size of the remaining } \\ \text { candidates if we guessed that code } \\ \text { and got that response }\end{array}\end{array}\right] \begin{array}{l}\text { select response } \\ \text { with largest } \\ \text { remaining for } \\ \text { that code }\end{array}\right]\end{array}\right.$			select code with smallest max
	num_codes * num_responses * cost_to_calculate_remaining_size			
	$\begin{aligned} & =\text { num_codes } * \text { num_responses } * \text { cost_to_filter_candidates } \\ & =\text { num_codes } * \text { num_responses } * \text { current_remaining_candidates } \end{aligned}$			
	How large is this at the top of the tree?			

Game tree

We can precompute the entire tree of possibilities

Expensive upfront to compute

Playing, though, becomes fast

