
1

http://www.youtube.com/watch?v=LcPWEMwGJVQ

Adversarial Search

CS311
David Kauchak

Spring 2013

Some material borrowed from :
Sara Owsley Sood and others

Admin

•  Reading/book?
•  Assignment 2

– On the web page
– 3 parts
– Anyone looking for a partner?
– Get started!

•  Written assignments
– Make sure to look at them asap!
– Post next written assignment soon

A quick review of search
Rational thinking via search – determine a plan of actions
by searching from starting state to goal state

Uninformed search vs. informed search

–  what’s the difference?
–  what are the techniques we’ve seen?
–  pluses and minuses?

Heuristic design

–  admissible?
–  dominant?

2

Why should we study games?
Clear success criteria

Important historically for AI

Fun J

Good application of search

–  hard problems (chess 35100 nodes in search tree, 1040 legal
states)

Some real-world problems fit this model

–  game theory (economics)
–  multi-agent problems

Types of games

What are some of the games
you’ve played?

Types of games: game properties
single-player vs. 2-player vs. multiplayer

Fully observable (perfect information) vs. partially
observable

Discrete vs. continuous

real-time vs. turn-based

deterministic vs. non-deterministic (chance)

Strategic thinking = intelligence

For reasons previously stated, two-player games have
been a focus of AI since its inception…

?	

Begs the question: Is strategic
thinking the same as intelligence?

3

Strategic thinking = intelligence
?	

humans	
 computers 	

good at evaluating the
strength of a board

for a player

good at looking ahead in
the game to find winning

combinations of moves

Humans and computers have different relative strengths in
these games:

Strategic thinking = intelligence
?	

humans	

good at evaluating the
strength of a board

for a player

How could you figure out how humans
approach playing chess?

 - experts could reconstruct these perfectly
 - novice players did far worse…

An experiment (by deGroot) was performed
in which chess positions were shown to novice
and expert players…

How humans play games…

 - experts could reconstruct these perfectly
 - novice players did far worse…

Random chess positions (not legal
ones) were then shown to the two
groups

 - experts and novices did just as
 badly at reconstructing them!

An experiment (by deGroot) was performed
in which chess positions were shown to novice
and expert players…

How humans play games…

4

People are still working on this problem…

http://people.brunel.ac.uk/~hsstffg/frg-research/chess_expertise/

Tic Tac Toe as search

How can we pose this as a
search problem?

Tic Tac Toe as search

…
X X

X

Tic Tac Toe as search

…

X

X X X O O

O

…

5

Tic Tac Toe as search

X

… X
X X

X O
O O

O

O
X
X X

X O
O X

O

X
O

O

X O
O X

X

Eventually, we’ll get to a leaf

The UTILITY of a state tells us how good the states are.

+1 -1 0

Defining the problem
INITIAL STATE – board position and the player whose turn it is

SUCCESSOR FUNCTION– returns a list of (move, next state) pairs

TERMINAL TEST – is game over? Are we in a terminal state?

UTILITY FUNCTION – (objective or payoff func) gives a numeric
value for terminal states (ie – chess – win/lose/draw +1/-1/0,
backgammon +192 to -192)

Games’ Branching Factors	

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4
Connect Four 7
Checkers 10
Othello 30
Chess 35
Go 300

On average, there are ~35 possible moves that a chess player
can make from any board configuration…	
 0 Ply

1 Ply

2 Ply

Hydra at
home in
the
United
Arab
Emirates…

18 Ply!!

Games’ Branching Factors	

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4
Connect Four 7
Checkers 10
Othello 30
Chess 35
Go 300

•  On average, there are ~35 possible moves that a chess player
can make from any board configuration…	
 0 Ply

1 Ply

2 Ply

Boundaries for
qualitatively

different games…

6

Games’ Branching Factors	

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4
Connect Four 7
Checkers 10
Othello 30
Chess 35
Go 300

•  On average, there are ~35 possible moves that a chess player
can make from any board configuration…	

“solved” games

computer-dominated

human-dominated

0 Ply

1 Ply

2 Ply

CHINOOK (2007)

Games vs. search problems?
Opponent!

–  unpredictable/uncertainty
–  deal with opponent strategy

Time limitations

–  must make a move in a reasonable amount of time
–  can’t always look to the end

Path costs

–  not about moves, but about UTILITY of the resulting
state/winning

Back to Tic Tac TOe

…

…

…

…

x x

x

X’s turn

O’s turn

X’s turn
…

I’m X, what will ‘O’ do?

X
O

O

X O
O X

X

X
O

O

X O
O X

X

X
O

X O
O X

X O’s turn

7

Minimizing risk
The computer doesn’t know what move O (the opponent)
will make

It can assume, though, that it will try and make the best
move possible

Even if O actually makes a different move, we’re no
worse off

X
O

O

X O
OX

X

X
O

O

X O
OX

X

X
O

X O
OX

X

Optimal Strategy

An Optimal Strategy is one that is at least as
good as any other, no matter what the
opponent does

–  If there's a way to force the win, it will
– Will only lose if there's no other option

How can X play optimally? How can X play optimally?
Start from the leaves and propagate the utility up:

–  if X’s turn, pick the move that maximizes the utility
–  if O’s turn, pick the move that minimizes the utility

Is this optimal?

8

Minimax Algorithm: An Optimal Strategy

•  Uses recursion to compute the “value” of each state
•  Proceeds to the leaves, then the values are “backed up”

through the tree as the recursion unwinds
•  What type of search is this?
•  What does this assume about how MIN will play? What

if this isn’t true?

minimax(state) =
 - if state is a terminal state
 Utility(state)
 - if MAX’s turn
 return the maximum of minimax(...)
 on all successors of current state
 - if MIN’s turn
 return the minimum of minimax(…)
 on all successors to current state

def minimax(state):
 for all actions a in actions(state):
 return the a with the largest minValue(result(state,a))

def maxValue(state):
 if state is terminal:
 return utility(state)
 else:
 # return the a with the largest minValue(result(state,a))
 value = -∞
 for all actions a in actions(state):
 value = max(value, minValue(result(state,a))
 return value

def minValue(state):
 if state is terminal:
 return utility(state)
 else:
 # return the a with the smallest maxValue(result(state,a))
 value = +∞
 for all actions a in actions(state):
 value = min(value, maxValue(result(state,a))
 return value

ME:
Assume the
opponent
will try and
minimize
value,
maximize
my move

OPPONENT:
Assume I will
try and
maximize my
value,
minimize his/
her move

Baby Nim

Take 1 or 2 at each turn
Goal: take the last match

What move should I take?

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

9

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0

10

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0

-1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0

-1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0

-1.0 1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0

1.0 -1.0

-1.0

11

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0 -1.0

1.0 -1.0

-1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0 -1.0

1.0 1.0 -1.0

-1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0 -1.0

1.0 1.0 1.0 -1.0

-1.0

Baby Nim

5

4 3

3 2 2 1

1 2

1 1 2 2

W

1

W 1 2 1 1 W

1 1 1 2 2 2

1 W W W W

W

1 1 1 1

1

2

Take 1 or 2 at each turn
Goal: take the last match

W

W

= 1.0

= -1.0

MAX wins

MIN wins/
MAX loses

MAX

MAX

MAX

MIN

MIN

-1.0

1.0

1.0 1.0 1.0

-1.0 -1.0 -1.0 1.0

-1.0 -1.0 -1.0 -1.0

1.0 1.0 1.0 -1.0

-1.0 1.0

could still win,
but not optimal!!!

12

3 12 8

A11 A12 A13

2 4 6

A21 A22 A23

14 5 2

A31 A32 A33

A3 A2 A1

Minimax example 2

Which move should be made: A1, A2 or A3?

3 12 8

A11 A12 A13

2 4 6

A21 A22 A23

14 5 2

A31 A32 A33

A3 A2 A1

Minimax example 2

3 2 2MIN

MAX

Properties of minimax
Minimax is optimal!

Are we done?

–  For chess, b ≈ 35, d ≈100 for reasonable games à exact
solution completely infeasible

–  Is minimax feasible for Mancala or Tic Tac Toe?
•  Mancala: 6 possible moves. average depth of 40, so 640 which is on

the edge
•  Tic Tac Toe: branching factor of 4 (on average) and depth of 9…

yes!

Ideas?

–  pruning!
–  improved state utility/evaluation functions

4 12 7

A11 A12 A13

10 3 16

A21 A22 A23

2 4 1

A31 A32 A33

A3 A2 A1

Pruning: do we have to traverse the whole tree?

MIN

MAX

13

4 12 7

A11 A12 A13

10 3 16

A21 A22 A23

2 4 1

A31 A32 A33

A3 A2 A1

Pruning: do we have to traverse the whole tree?

MIN

MAX

4

4 12 7

A11 A12 A13

10 3 16

A21 A22 A23

2 4 1

A31 A32 A33

A3 A2

Minimax example 2

4

A1

3?

?

MIN

MAX

4 12 7

A11 A12 A13

10 3

A21 A22

2 4 1

A31 A32 A33

A3 A2

Minimax example 2

4

A1

3?

prune!

Any others if we continue?

MIN

MAX

4 12 7

A11 A12 A13

10 3

A21 A22

2 4 1

A31 A32 A33

A3 A2

Minimax example 2

4

A1

3? 2? MIN

MAX

14

4 12 7

A11 A12 A13

10 3

A21 A22

2

A31

A3 A2

Minimax example 2

4

A1

3? 2?

prune!

MIN

MAX

Alpha-Beta pruning
An optimal pruning strategy

–  only prunes paths that are suboptimal (i.e. wouldn’t be
chosen by an optimal playing player)

–  returns the same result as minimax, but faster

As we go, keep track of the best and worst along a
path

–  alpha = best choice we’ve found so far for MAX
–  beta = best choice we’ve found so far for MIN

Alpha-Beta pruning
alpha = best choice we’ve found so far for MAX

Using alpha and beta to prune:

–  We’re examining MIN’s options for a ply
–  To do this, we’re examining all possible moves for MAX. If we

find a value for one of MAX’s moves that is less than alpha,
return. (MIN could do better down this path)

MIN

MAX return if any < alpha

Alpha-Beta pruning
beta = best choice we’ve found so far for MIN

Using alpha and beta to prune:

–  We’re examining MAX’s options for a ply
–  To do this, we’re examining all possible moves for MIN. If we

find a value for one of MIN’s possible moves that is greater than
beta, return. (MIN won’t end up down here)

MIN

MAX

return if any > beta

15

Alpha-Beta pruning

[-∞, +∞]

[-∞, +∞]

Do DFS until we reach a leaf:

Alpha-Beta pruning

[-∞, +∞]

[-∞, +∞]

3

What do we know?

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

[-∞, +∞]

[-∞, +∞]

3

What do we know?

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

[-∞, 3]

[-∞, +∞]

3

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

≤ 3

16

Alpha-Beta pruning

[-∞, 3]

[-∞, +∞]

3 12

≤ 3

What do we know?

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

[-∞, 3]

[-∞, +∞]

3 12

≤ 3

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

[-∞, 3]

[-∞, +∞]

3 12 8

≤ 3

What do we know?

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

[3, 3]

[3, +∞]

3 12 8

3

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

17

Alpha-Beta pruning

[3, 3]

[3, +∞]

3 12 8

[-∞, +∞]

2

3

What do we know?

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

[3, 3]

[3, +∞]

3 12 8

[-∞, 2]

2 X X

3 ≤ 2

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Prune!

Alpha-Beta pruning

[3, 3]

[3,+∞]

3 12 8

[-∞, 2]

2 X X

[-∞, +∞]

14

3 ≤ 2

What do we know?

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Alpha-Beta pruning

[3, 3]

[3, 14]

3 12 8

[-∞, 2]

2 X X

[-∞, 14]

14

3 ≤ 2 ≤ 14

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

≥ 3

18

Alpha-Beta pruning

[3, 3]

[3, 14]

3 12 8

[-∞, 2]

2 X X

[-∞, 14]

14 5

3 ≤ 2 ≤ 14

What do we know?

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

≥ 3

Alpha-Beta pruning

[3, 3]

[3, 5]

3 12 8

[-∞, 2]

2 X X

[-∞, 5]

14 5

3 ≤ 2 ≤ 5

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

≥ 3

Alpha-Beta pruning

[3, 3]

[3, 14]

3 12 8

[-∞, 2]

2 X X

[-∞, 5]

14 5

3 ≤ 2 ≤ 5

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

2

What do we know? ≥ 3

Alpha-Beta pruning

[3, 3]

[3, 3]

3 12 8

[-∞, 2]

2 X X

[2, 2]

14 5 2

3 ≤ 2 2

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

 3

19

def maxValue(state, alpha, beta):
 if state is terminal:
 return utility(state)
 else:
 value = -∞
 for all actions a in actions(state):
 value = max(value, minValue(result(state,a), alpha, beta)
 if value >= beta:
 return value # prune!
 alpha = max(alpha, value) # update alpha
 return value

We’re making a decision for MAX.
•  When considering MIN’s choices, if we find a value that is greater
than beta, stop, because MIN won’t make this choice
•  if we find a better path than alpha, update alpha

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

def minValue(state, alpha, beta):
 if state is terminal:
 return utility(state)
 else:
 value = +∞
 for all actions a in actions(state):
 value = min(value, maxValue(result(state,a), alpha, beta)
 if value <= alpha:
 return value # prune!
 beta = min(beta, value) # update alpha
 return value

We’re making a decision for MIN.
•  When considering MAX’s choices, if we find a value that is less
than alpha, stop, because MAX won’t make this choice
•  if we find a better path than beta for MIN, update beta

alpha = best choice we’ve found so far for MAX
beta = best choice we’ve found so far for MIN

Baby NIM2: take 1, 2 or 3 sticks

6

Effectiveness of pruning

Notice that as we gain more information
about the state of things, we’re more likely to
prune

What affects the performance of pruning?

– key: which order we visit the states
– can try and order them so as to improve

pruning

20

Effectiveness of pruning
If perfect state ordering:

–  O(bm) becomes O(bm/2)
–  We can solve a tree twice as deep!

Random order:

–  O(bm) becomes O(b3m/4)
–  still pretty good

For chess using a basic ordering

–  Within a factor of 2 of O(bm/2)

