
4/9/13

1

Neural Networks

David Kauchak
CS311
Spring 2013

Admin

n Assignment 5
¨  due Friday at 6pm

n Schedule for the next two weeks

What is this? How did you know?

293871947009

* √52.86301

/ 80.2341 = ?

What is the answer to this calculation?

4/9/13

2

293871947009

* √52.86301

/ 80.2341

= 26630240520.936812470902167425359

A computer can do this almost instantly!

Neural Networks

Neural Networks try to mimic the structure and
function of our nervous system

People like biologically motivated approaches
(e.g. genetic algorithms)

Our Nervous System

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Neuron

Our nervous system: the
computer science view

the human brain is a large collection
of interconnected neurons

a NEURON is a brain cell

¨  collect, process, and disseminate
electrical signals

¨  Neurons are connected via synapses
¨  They FIRE depending on the

conditions of the neighboring neurons

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

4/9/13

3

Our nervous system

The human brain
¨  contains ~1011 (100 billion)

neurons
¨  each neuron is connected to

~104 (10,000) other neurons
n  What is this in CS language?

¨  Neurons can fire as fast as 10-3
seconds

How does the brain compare to a computer?

Man vs. Machine

109 transistors
1011 bits of ram
1013 bits on disk
10-9 cycle time

1011 neurons
1011 neurons
1014 synapses
10-3 “cycle” time

Brains are still pretty fast

Who is this?

Brains are still pretty fast

If you were me, you’d be able to
identify this person in 10-1 s

4/9/13

4

Brains are still pretty fast
Given a neuron firing time of 10-3 s, how
many neurons in sequence could fire in this
time?

¨  A few hundred

What are possible explanations?

¨  either neurons are performing some very
complicated computations

¨  brain is taking advantage of the massive
parallelization

w is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

Weight w Node A Node B

(neuron) (neuron)

Neural Networks
Node (Neuron)

Edge (synapses)

our approximation to the brain

Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A Single Neuron/Perceptron

€

in = wi
i
∑ xi

€

∑

€

g(in)

threshold function

4/9/13

5

Possible threshold functions Possible threshold functions

hard threshold:
if in (the sum of weights) >=
threshold 1, 0 otherwise

Sigmoid

€

g(x) =
1

1+ e−ax

1

-1

1

0.5

A Single Neuron/Perceptron

?
Threshold of 1

1

1

0

1

1

-1

1

0.5

A Single Neuron/Perceptron

0
Threshold of 1

1

1

0

1

Weighted sum is
0.5, which is not
equal or larger
than the
threshold

4/9/13

6

1

-1

1

0.5

A Single Neuron/Perceptron

?
Threshold of 1

1

0

0

1

1

-1

1

0.5

A Single Neuron/Perceptron

1
Threshold of 1

1

1

0

1

Weighted sum is
1.5, which is
larger than the
threshold

Neural networks
Different kinds/characteristics of networks

inputs

inputs inputs

How are these different?

Neural networks

inputs

inputs

Feed forward networks (we’ll
mostly deal with these)

hidden units/layer

4/9/13

7

Neural networks

Recurrent network

Output is fed back to input

Can support memory!

How?

inputs

History of Neural Networks
McCulloch and Pitts (1943) – introduced model of artificial
neurons and suggested they could learn

Hebb (1949) – Simple updating rule for learning

Rosenblatt (1962) - the perceptron model

Minsky and Papert (1969) – wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s) –
invented back-propagation learning for multilayer networks

Perceptron: single neuron
First wave in neural networks in the 1960’s

Output y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3

€

in = wi
i
∑ xi

threshold function

What defines the perceptron? How could we “train” it?

Perceptron
Defined by its threshold and input weights can be modified

If the neuron doesn’t give the desired output, then it has
made a mistake.

Input weights and threshold can be changed according to a
learning algorithm when it makes a mistake

4/9/13

8

Examples - Logical operators

AND – if all inputs are 1, return 1, otherwise return 0

OR – if at least one input is 1, return 1, otherwise return 0

NOT – return the opposite of the input

XOR – if exactly one input is 1, then return 1, otherwise
return 0

AND
x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

AND

Inputs are either 0 or 1

T = 2 Output y

Input x1

Input x2

W1 = 1

W2 = 1

AND

Inputs are either 0 or 1

Output is 1 only if
all inputs are 1

4/9/13

9

T = ? Output y

Input x1

Input x2

Input x3

Input x4

W1 = ?

W2 = ?

W3 = ?

W4 = ?

AND

Inputs are either 0 or 1

T = 4 Output y

Input x1

Input x2

Input x3

Input x4

W1 = 1

W2 = 1

W3 = 1

W4 = 1

AND

Inputs are either 0 or 1

Output is 1 only if
all inputs are 1

OR
x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

OR

Inputs are either 0 or 1

4/9/13

10

T = 1 Output y

Input x1

Input x2

W1 = 1

W2 = 1

OR

Inputs are either 0 or 1

Output is 1 if at
least 1 input is 1

T = ? Output y

Input x1

Input x2

Input x3

Input x4

W1 = ?

W2 = ?

W3 = ?

W4 = ?

OR

Inputs are either 0 or 1

T = 1 Output y

Input x1

Input x2

Input x3

Input x4

W1 = 1

W2 = 1

W3 = 1

W4 = 1

OR

Inputs are either 0 or 1

Output is 1 if at
least 1 input is 1

NOT

x1 not x1

0 1

1 0

4/9/13

11

T = ? Output y Input x1
W1 = ?

NOT

Input is either 0 or 1
T = 0 Output y Input x1

W1 = -1

NOT

Input is either 0 or 1 If input is 1, output is 0.
If input is 0, output is 1.

How about…

x1 x2 x3 y

0 0 0 1

0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 0

T = ? Output y

Input x1

Input x3

w1 = ?

w3 = ?

Input x2
w2 = ?

Training neural nets

output: 1, -1

We’d like to train neural networks

We can learn to classify

We can also learn a regression
function from input to a real value

What can we adjust/learn
for NNs in general?

4/9/13

12

NN parameters

Learn the individual
weights between nodes

Learn individual
node parameters
(e.g. threshold)

An aside: linear regression

Given some points,
find the line that best
fits/explains the data

How can we find this line?

An aside: linear regression

Learn a line h that
minimizes an error function:

€

error(h) = (yi − h(xi))
2

i=1

n
∑

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

in the case of a 2d line:

function for
a line

Linear regression

We’d like to minimize the error
Find w1 and w0 such that the error is minimized

How can we do this?

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

4/9/13

13

Linear regression

Partial derivatives give us the slope in that dimension

Option 1

¨  When slope is 0, it’s a min or a max
¨  This approach gets hard if we want to do non-linear regression

Option 2: gradient descent

¨  move in the appropriate direction (but not necessarily down to 0)
¨  we can view the problem as a search for wi that minimizes the

loss

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑minimize:

Gradient descent
If the loss function is convex, what does this mean for our
minimum?

¨  In three dimensions, think about a curved piece of paper
¨  Or, think of it like skiing in a big bowl

Approach:

¨  pick a starting point (w)
¨  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss

(using the derivative)

Gradient descent
pick a starting point (w)

repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing

loss (using the derivative)

€

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to
move in the error direction)

Linear gradient descent
pick a starting point (w)

repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing

loss (using the derivative)

€

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

the value of the example in
that dimension

sum the error over
all the examples

difference between
actual and predicted

intuitively, why does this work?

4/9/13

14

Back to training a perceptron

We want to train a
perceptron to learn a
function given training data

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1
T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

Threshold T Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

If w1x1 + w2x2 + … + wnxn ≥ T,

 then the output of n is 1.

Otherwise,

 the output of n is 0.

A Single Perceptron
Does this learning problem look
like anything we’ve seen?

Perceptron Training Rule

- pick a random weight
vector
- repeat until loss doesn’t
decrease in all dimensions:

- pick a dimension
- move a small amount in that
dimension towards decreasing
loss (using the derivative)

- pick a random weight
vector
- repeat until we correctly
classify all the points:

- pick an example
-  if we get it wrong:

-  modify the weights a small
amount

linear regression perceptron learning

Key difference: regression error vs. classification error

Perceptron Training Rule

- pick a random weight
vector
- repeat until loss doesn’t
decrease in all dimensions:

- pick a dimension
- move a small amount in that
dimension towards decreasing
loss (using the derivative)

- pick a random weight
vector
- repeat until we correctly
classify all the points:

- pick an example
-  if we get it wrong:

-  modify the weights a small
amount

linear regression perceptron learning

€

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

€

wi = wi −α xi (y j − h(x))

4/9/13

15

Modifying the weights

Only update the weights when we get an example wrong

€

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector:

how much this feature played
a role (e.g. active or not)

learning rate

difference between
actual and predicted

Example: a simple problem
 4 points linearly separable

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5
-1

-0.5
0

0.5
1

1.5
2

(1/2, 1)

(1,1/2)

(-1,1/2)

(-1,1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
initial weights

W(0) = (0,1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5
-1

-0.5
0

0.5
1

1.5
2 first correction

W(1) = (1/3,5/6)

4/9/13

16

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
second correction

 W(2) = (2/3,2/3)

Perceptron learning

How does this compare to say the linear SVM?

Perceptron learning

Only works when data is linearly separable

Voted perceptron helps get a better linear separator

Has remained popular as an approach for learning weights
in high dimensional space

Other approaches for training perceptrons do exist:

¨  Delta rule (Gradient Descent Approach)
¨  Linear Programming

XOR
x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

How would the perceptron do?

4/9/13

17

Linearly Separable
x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Perceptrons

1969 book by Marvin Minsky and Seymour Papert

The problem is that they can only work for classification
problems that are linearly separable

Insufficiently expressive

“Important research problem” to investigate multilayer
networks although they were pessimistic about their value

XOR
Input x1

Input x2

?

?

?

?

T = ?

T = ?

T = ?
?

?

x1 x2 x1 xor x2

0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2

XOR
Input x1

Input x2

1

-1

-1

1

T = 1

T = 1

T = 1
1

1

x1 x2 x1 xor x2

0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2

4/9/13

18

Learning in multilayer networks
Similar idea to perceptron learning

Examples are presented to the network

If the network computes an output that matches
the desired, nothing is done

If there is an error, then the weights are adjusted to
balance the error

Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s output
is different than the expected output, update the weights

perceptron multi-layer network

Any problem with this for general NNs?

Learning in multilayer networks

multi-layer network

€

wi = wi −α d
dwi

error(w)

What does this derivative look like?

Logistic and other thresholds

€

wi = wi −α d
dwi

error(w)

€

wi = wi −α xi g'(w ⋅ x)(y - h(x))

the slope at that point

Depends on the threshold function!

4/9/13

19

Logistic and other thresholds

€

wi = wi −α d
dwi

error(w)

€

wi = wi −α xi g'(w ⋅ x)(y - h(x))

the slope at that point

Any problem with using the
threshold function?

Logistic and other thresholds

We’ll use a sigmoid, which
approximates a threshold but has a
well defined derivative

€

wi = wi −α d
dwi

error(w)

€

wi = wi −α xi g'(w ⋅ x)(y - h(x))

Now have a term for
the slope at that point

Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s output
is different than the expected output, update the weights

perceptron multi-layer network

Any other problem with this for general NNs?

Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s output
is different than the expected output, update the weights

Challenge: for multilayer networks, we don’t know what the
expected output/error is for the internal nodes

perceptron multi-layer network

expected output?

4/9/13

20

Backpropagation
Say we get it wrong, and we now want to
update the weights

We can calculate the actual error here

Backpropagation
Say we get it wrong, and we now want to
update the weights

We’d like to propagate the error back

Backpropagation
Say we get it wrong, and we now want to
update the weights

“back-propagate” the error:

Assume all of these nodes were
responsible for some of the error

How can we figure out how much they
were responsible for?

Backpropagation
Say we get it wrong, and we now want to
update the weights

error

w1
w2 w3

error for node i is: wi error

4/9/13

21

Backpropagation
Say we get it wrong, and we now want to
update the weights

error

w1
w2 w3

how much do we update the weights by?

error for node i is: wi error

Backpropagation

€

wi = wi −α g'(w ⋅ x) (y - h(x)) x i

Say we get it wrong, and we now want to
update the weights

€

wi = wi −α g'(w ⋅ ai) error ai

the nodes fraction
of the error

Backpropagation
calculate the error at the output layer

backpropagate the error up the network

¨  if a node has multiple output nodes, sum the error of these nodes

Update the weights based on these errors

Can be shown that this is the appropriate thing to do based on our
assumptions

That said, many neuroscientists don’t think the brain does
backpropagation of errors

Neural network regression

Given enough hidden nodes, you can learn any
function with a neural network

Challenges:

4/9/13

22

Neural network regression

Given enough hidden nodes, you can learn any
function with a neural network

Challenges:

¨ overfitting
¨ picking a network structure (like picking our Bayes net

structure)
¨ can require a lot of tweaking of parameters,

preprocessing, etc. Popular for digit recognition and many computer vision tasks
http://yann.lecun.com/exdb/mnist/

Cog sci people like NNs

Expression/emotion recognition
¨ Gary Cottrell et al

Language learning

Interpreting Satellite Imagery for
Automated Weather Forecasting

4/9/13

23

Summary
Perceptrons (one layer networks)

¨  convenient and fast to train
¨  linear separator
¨  work well in high-dimensions
¨  insufficiently expressive in general

Multi-layer networks are sufficiently expressive and can be
trained by error back-propogation

Many applications including speech, driving, hand written
character recognition, fraud detection, driving, etc.

