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Neural Networks 

David Kauchak 
CS311 
Spring 2013 

Admin 

n Assignment 5 
¨  due Friday at 6pm 

n Schedule for the next two weeks 

What is this?    How did you know? 

293871947009  

* √52.86301  

/ 80.2341 = ? 

What is the answer to this calculation? 
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293871947009  

* √52.86301  

/ 80.2341 

= 26630240520.936812470902167425359 

A computer can do this almost instantly! 

Neural Networks 

 
 

Neural Networks try to mimic the structure and 
function of our nervous system 
 
People like biologically motivated approaches  
(e.g. genetic algorithms) 

Our Nervous System 
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Our nervous system: the 
computer science view 

the human brain is a large collection 
of interconnected neurons 
 
a NEURON is a brain cell 

¨  collect, process, and disseminate 
electrical signals 

¨  Neurons are connected via synapses 
¨  They FIRE depending on the 

conditions of the neighboring neurons 

Synapses
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Synapses
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Our nervous system 

The human brain 
¨  contains ~1011 (100 billion) 

neurons 
¨  each neuron is connected to 

~104 (10,000) other neurons 
n  What is this in CS language? 

¨  Neurons can fire as fast as 10-3 
seconds 

 

How does the brain compare to a computer? 

Man vs. Machine 

109 transistors 
1011 bits of ram 
1013 bits on disk 
10-9 cycle time 
 

1011 neurons 
1011 neurons 
1014 synapses 
10-3 “cycle” time 
 

Brains are still pretty fast 

Who is this? 

Brains are still pretty fast 

If you were me, you’d be able to 
identify this person in 10-1 s 
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Brains are still pretty fast 
Given a neuron firing time of 10-3 s, how 
many neurons in sequence could fire in this 
time? 

¨  A few hundred 

 
What are possible explanations? 

¨  either neurons are performing some very 
complicated computations 

¨  brain is taking advantage of the massive 
parallelization 

w is the strength of signal sent between A and B. 

 

If A fires and w is positive, then A stimulates B. 

 

If A fires and w is negative, then A inhibits B. 

 

If a node is stimulated enough, then it also fires.   

 

How much stimulation is required is determined by its threshold. 

Weight w Node A Node B 

(neuron) (neuron) 

Neural Networks 
Node (Neuron) 

Edge (synapses) 

our approximation to the brain 

Output y 

Input x1 

Input x2 

Input x3 

Input x4 

Weight w1 

Weight w2 

Weight w3 

Weight w4 

A Single Neuron/Perceptron 

€ 

in = wi
i
∑ xi

€ 

∑

€ 

g(in)

threshold function 
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Possible threshold functions Possible threshold functions 

hard threshold: 
if in (the sum of weights) >= 
threshold 1, 0 otherwise 

Sigmoid 

€ 

g(x) =
1

1+ e−ax

1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

? 
Threshold of 1 

1 

1 

0 

1 

1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

0 
Threshold of 1 

1 

1 

0 

1 

Weighted sum is 
0.5, which is not 
equal or larger 
than the 
threshold 
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1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

? 
Threshold of 1 

1 

0 

0 

1 

1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

1 
Threshold of 1 

1 

1 

0 

1 

Weighted sum is 
1.5, which is 
larger than the 
threshold 

Neural networks 
Different kinds/characteristics of networks 

inputs 

inputs inputs 

How are these different? 

Neural networks 

inputs 

inputs 

Feed forward networks (we’ll 
mostly deal with these) 

hidden units/layer 
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Neural networks 

Recurrent network 
 
Output is fed back to input 
 
Can support memory! 
 
How? 

inputs 

History of Neural Networks 
McCulloch and Pitts (1943) – introduced model of artificial 
neurons and suggested they could learn 
 
Hebb (1949) – Simple updating rule for learning 
 
Rosenblatt (1962) - the perceptron model 
 
Minsky and Papert (1969) – wrote Perceptrons  
 
Bryson and Ho (1969, but largely ignored until 1980s) – 
invented back-propagation learning for multilayer networks 

Perceptron: single neuron 
First wave in neural networks in the 1960’s 
 

Output y 

Input x1 

Input x2 

Input x3 

Weight w1 

Weight w2 

Weight w3 

€ 

in = wi
i
∑ xi

threshold function 

What defines the perceptron?  How could we “train” it? 

Perceptron 
Defined by its threshold and input weights can be modified 
 
If the neuron doesn’t give the desired output, then it has 
made a mistake. 
 
Input weights and threshold can be changed according to a 
learning algorithm when it makes a mistake 



4/9/13 

8 

Examples - Logical operators   

AND – if all inputs are 1, return 1, otherwise return 0 
 
OR – if at least one input is 1, return 1, otherwise return 0 
 
NOT – return the opposite of the input 
 
XOR – if exactly one input is 1, then return 1, otherwise 
return 0 

AND 
x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

AND 

Inputs are either 0 or 1 

T = 2 Output y 

Input x1 

Input x2 

W1 = 1 

W2 = 1 

AND 

Inputs are either 0 or 1 

Output is 1 only if  
all inputs are 1 
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T = ? Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = ? 

W2  = ? 

W3 = ? 

W4  = ? 

AND 

Inputs are either 0 or 1 

T = 4 Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = 1 

W2  = 1 

W3 = 1 

W4  = 1 

AND 

Inputs are either 0 or 1 

Output is 1 only if  
all inputs are 1 

OR 
x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

OR 

Inputs are either 0 or 1 
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T = 1 Output y 

Input x1 

Input x2 

W1 = 1 

W2 = 1 

OR 

Inputs are either 0 or 1 

Output is 1 if at  
least 1 input is 1 

T = ? Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = ? 

W2  = ? 

W3 = ? 

W4  = ? 

OR 

Inputs are either 0 or 1 

T = 1 Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = 1 

W2  = 1 

W3 = 1 

W4  = 1 

OR 

Inputs are either 0 or 1 

Output is 1 if at  
least 1 input is 1 

NOT 

x1 not x1 

0 1 

1 0 
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T = ? Output y Input x1 
W1  = ? 

NOT 

Input is either 0 or 1 
T = 0 Output y Input x1 

W1  = -1 

NOT 

Input is either 0 or 1 If input is 1, output is 0. 
If input is 0, output is 1. 

How about… 

x1 x2 x3 y 

0 0 0 1 

0 1 0 0 

1 0 0 1 

1 1 0 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 1 0 

T = ? Output y 

Input x1 

Input x3 

w1 = ? 

w3 = ? 

Input x2 
w2 = ? 

Training neural nets 

output: 1, -1 

We’d like to train neural networks 
 
We can learn to classify 
 
We can also learn a regression 
function from input to a real value 

What can we adjust/learn 
for NNs in general? 
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NN parameters 

Learn the individual 
weights between nodes 

Learn individual 
node parameters 
(e.g. threshold) 

An aside: linear regression 

Given some points, 
find the line that best 
fits/explains the data 

How can we find this line? 

An aside: linear regression 

Learn a line h that 
minimizes an error function: 

€ 

error(h) = (yi − h(xi))
2

i=1

n
∑

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

in the case of a 2d line: 

function for 
a line 

Linear regression 

We’d like to minimize the error 
Find w1 and w0 such that the error is minimized 

How can we do this? 

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑
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Linear regression 

Partial derivatives give us the slope in that dimension 
 
Option 1 

¨  When slope is 0, it’s a min or a max 
¨  This approach gets hard if we want to do non-linear regression 

 
Option 2: gradient descent 

¨  move in the appropriate direction (but not necessarily down to 0) 
¨  we can view the problem as a search for wi that minimizes the 

loss 

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑minimize: 

Gradient descent 
If the loss function is convex, what does this mean for our 
minimum? 

¨  In three dimensions, think about a curved piece of paper 
¨  Or, think of it like skiing in a big bowl 

 
Approach: 

¨  pick a starting point (w) 
¨  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss 

(using the derivative) 

Gradient descent 
pick a starting point (w) 
 
repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing 

loss (using the derivative) 

€ 

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to 
move in the error direction) 

Linear gradient descent 
pick a starting point (w) 
 
repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing 

loss (using the derivative) 

€ 

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

the value of the example in 
that dimension 

sum the error over 
all the examples 

difference between 
actual and predicted 

intuitively, why does this work? 
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Back to training a perceptron 

We want to train a 
perceptron to learn a 
function given training data 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

Threshold T Output y 

Input x1 

Input x2 

Input x3 

Input x4 

Weight w1 

Weight w2 

Weight w3 

Weight w4 

If w1x1 + w2x2 + … + wnxn ≥ T,  

 then the output of n is 1. 

Otherwise,  

 the output of n is 0. 

A Single Perceptron 
Does this learning problem look 
like anything we’ve seen? 

Perceptron Training Rule 

- pick a random weight 
vector 
- repeat until loss doesn’t 
decrease in all dimensions: 

- pick a dimension 
- move a small amount in that 
dimension towards decreasing 
loss (using the derivative) 

- pick a random weight 
vector 
- repeat until we correctly 
classify all the points: 

- pick an example 
-  if we get it wrong: 

-  modify the weights a small 
amount  

linear regression perceptron learning 

Key difference: regression error vs. classification error 

Perceptron Training Rule 

- pick a random weight 
vector 
- repeat until loss doesn’t 
decrease in all dimensions: 

- pick a dimension 
- move a small amount in that 
dimension towards decreasing 
loss (using the derivative) 

- pick a random weight 
vector 
- repeat until we correctly 
classify all the points: 

- pick an example 
-  if we get it wrong: 

-  modify the weights a small 
amount  

linear regression perceptron learning 

€ 

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

€ 

wi = wi −α xi (y j − h(x))
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Modifying the weights 

Only update the weights when we get an example wrong 

€ 

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector: 

how much this feature played 
a role (e.g. active or not) 

learning rate 

difference between 
actual and predicted 

Example: a simple problem 
   4 points linearly separable 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 
-1.5 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 

(1/2, 1)  

(1,1/2) 
  

(-1,1/2)  

(-1,1)  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
initial weights

W(0) = (0,1) 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 
-1.5 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 first correction 

W(1) = (1/3,5/6)  



4/9/13 

16 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
second correction

 W(2) = (2/3,2/3)

Perceptron learning 

How does this compare to say the linear SVM? 

Perceptron learning 

Only works when data is linearly separable 
 
Voted perceptron helps get a better linear separator 
 
Has remained popular as an approach for learning weights 
in high dimensional space 
 
Other approaches for training perceptrons do exist: 

¨  Delta rule (Gradient Descent Approach) 
¨  Linear Programming 

XOR 
x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

How would the perceptron do? 
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Linearly Separable 
x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x1 

x2 

x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x1 

x2 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

x1 

x2 

Perceptrons 

1969 book by Marvin Minsky and Seymour Papert 
 
The problem is that they can only work for classification 
problems that are linearly separable 
 
Insufficiently expressive 
 
“Important research problem” to investigate multilayer 
networks although they were pessimistic about their value 

XOR 
Input x1 

Input x2 

?  

? 

?  

? 

T = ? 

T = ? 

T = ? 
? 

? 

x1 x2 x1 xor x2 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Output = x1 xor x2 

XOR 
Input x1 

Input x2 

1  

-1 

-1  

1 

T = 1 

T = 1 

T = 1 
1 

1 

x1 x2 x1 xor x2 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Output = x1 xor x2 
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Learning in multilayer networks 
Similar idea to perceptron learning 
 
Examples are presented to the network 
 
If the network computes an output that matches 
the desired, nothing is done 
 
If there is an error, then the weights are adjusted to 
balance the error 

Learning in multilayer networks 
Key idea for perceptron learning: if the perceptron’s output 
is different than the expected output, update the weights 
 

perceptron multi-layer network 

Any problem with this for general NNs? 

Learning in multilayer networks 

multi-layer network 

€ 

wi = wi −α d
dwi

error(w)

What does this derivative look like? 

Logistic and other thresholds 

€ 

wi = wi −α d
dwi

error(w)

€ 

wi = wi −α xi g'(w ⋅ x)(y - h(x))

the slope at that point 

Depends on the threshold function! 



4/9/13 

19 

Logistic and other thresholds 

€ 

wi = wi −α d
dwi

error(w)

€ 

wi = wi −α xi g'(w ⋅ x)(y - h(x))

the slope at that point 

Any problem with using the 
threshold function? 

Logistic and other thresholds 

We’ll use a sigmoid, which 
approximates a threshold but has a 
well defined derivative 

€ 

wi = wi −α d
dwi

error(w)

€ 

wi = wi −α xi g'(w ⋅ x)(y - h(x))

Now have a term for 
the slope at that point 

Learning in multilayer networks 
Key idea for perceptron learning: if the perceptron’s output 
is different than the expected output, update the weights 
 

perceptron multi-layer network 

Any other problem with this for general NNs? 

Learning in multilayer networks 
Key idea for perceptron learning: if the perceptron’s output 
is different than the expected output, update the weights 
 
Challenge: for multilayer networks, we don’t know what the 
expected output/error is for the internal nodes 

perceptron multi-layer network 

expected output? 
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Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

We can calculate the actual error here 

Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

We’d like to propagate the error back 

Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

“back-propagate” the error: 
 
Assume all of these nodes were 
responsible for some of the error 
 
How can we figure out how much they 
were responsible for? 

Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

error 

w1 
w2 w3 

error for node i is: wi error 
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Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

error 

w1 
w2 w3 

how much do we update the weights by? 

error for node i is: wi error 

Backpropagation 

€ 

wi = wi −α g'(w ⋅ x) (y - h(x)) x i

Say we get it wrong, and we now want to 
update the weights 

€ 

wi = wi −α g'(w ⋅ ai) error ai

the nodes fraction 
of the error 

Backpropagation 
calculate the error at the output layer 
 
backpropagate the error up the network 

¨  if a node has multiple output nodes, sum the error of these nodes 
 
Update the weights based on these errors 

Can be shown that this is the appropriate thing to do based on our 
assumptions 
 
That said, many neuroscientists don’t think the brain does 
backpropagation of errors 

Neural network regression 

Given enough hidden nodes, you can learn any 
function with a neural network 
 
Challenges: 
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Neural network regression 

Given enough hidden nodes, you can learn any 
function with a neural network 
 
Challenges: 

¨ overfitting 
¨ picking a network structure (like picking our Bayes net 

structure) 
¨ can require a lot of tweaking of parameters, 

preprocessing, etc. Popular for digit recognition and many computer vision tasks 
http://yann.lecun.com/exdb/mnist/ 

Cog sci people like NNs 

Expression/emotion recognition 
¨ Gary Cottrell et al 

Language learning 

Interpreting Satellite Imagery for 
Automated Weather Forecasting 
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Summary 
Perceptrons (one layer networks) 

¨  convenient and fast to train 
¨  linear separator 
¨  work well in high-dimensions 
¨  insufficiently expressive in general 

 
Multi-layer networks are sufficiently expressive and can be 
trained by error back-propogation 
 
Many applications including speech, driving, hand written 
character recognition, fraud detection, driving, etc. 


