
3/7/13

1

Mergeable Heaps

David Kauchak
cs302

Spring 2013

Admin

l  Homework 7?

Binary heap
A binary tree where the value of a parent is greater
than or equal to the value of it’s children

Additional restriction: all levels of the tree are
complete except the last

Max heap vs. min heap

Binary heap - operations
Maximum(S) - return the largest element in the set

ExtractMax(S) – Return and remove the largest element in
the set

Insert(S, val) – insert val into the set

IncreaseElement(S, x, val) – increase the value of element
x to val

BuildHeap(A) – build a heap from an array of elements

3/7/13

2

Binary heap representations

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

16

14 10

8

2 4 1

7 9 3

Heapify
Assume left and right children are heaps,
turn current set into a valid heap

Heapify
Assume left and right children are heaps,
turn current set into a valid heap

Heapify
Assume left and right children are heaps,
turn current set into a valid heap

find out which is
largest: current,
left of right

3/7/13

3

Heapify
Assume left and right children are heaps,
turn current set into a valid heap

Heapify
Assume left and right children are heaps,
turn current set into a valid heap

if a child is
larger, swap and
recurse

Heapify

16

3 10

8

2 4 1

7 9 5

16 3 10 8 7 9 5 2 4 1

1 2 3 4 5 6 7 8 9 10

Heapify

16

3 10

8

2 4 1

7 9 5

16 3 10 8 7 9 5 2 4 1

1 2 3 4 5 6 7 8 9 10

3/7/13

4

Heapify

16

8 10

3

2 4 1

7 9 5

16 8 10 3 7 9 5 2 4 1

1 2 3 4 5 6 7 8 9 10

Heapify

16

8 10

3

2 4 1

7 9 5

16 8 10 3 7 9 5 2 4 1

1 2 3 4 5 6 7 8 9 10

Heapify

16

8 10

4

2 3 1

7 9 5

16 8 10 4 7 9 5 2 3 1

1 2 3 4 5 6 7 8 9 10

Heapify

16

8 10

4

2 3 1

7 9 5

16 8 10 4 7 9 5 2 3 1

1 2 3 4 5 6 7 8 9 10

3/7/13

5

Heapify

16

8 10

4

2 3 1

7 9 5

16 8 10 4 7 9 5 2 3 1

1 2 3 4 5 6 7 8 9 10

Correctness of Heapify

Correctness of Heapify

Base case:
l  Heap with a single element
l  Trivially a heap

Correctness of Heapify
Both children are valid heaps
Three cases:

Case 1: A[i] (current node) is the largest

l  parent is greater than both children
l  both children are heaps
l  current node is a valid heap

3/7/13

6

Correctness of Heapify
Case 2: left child is the largest

l  When Heapify returns:
l  Left child is a valid heap
l  Right child is unchanged and therefore a valid heap
l  Current node is larger than both children since we selected the

largest node of current, left and right
l  current node is a valid heap

Case 3: right child is largest

l  similar to above

Running time of Heapify
What is the cost of each individual call to Heapify (not counting
recursive calls)?

l  Θ(1)

How many calls are made to Heapify?

l  O(height of the tree)

What is the height of the tree?

l  Complete binary tree, except for the last level

nh ≤2

nh 2log≤

O(log n)

Binary heap - operations
Maximum(S) - return the largest element in the set

ExtractMax(S) – Return and remove the largest element in
the set

Insert(S, val) – insert val into the set

IncreaseElement(S, x, val) – increase the value of element
x to val

BuildHeap(A) – build a heap from an array of elements

Maximum

Return the largest element from the set

Return A[1]

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

3/7/13

7

ExtractMax
Return and remove the largest element in the set

16

14 10

8

2 4 1

7 9 3

ExtractMax
Return and remove the largest element in the set

14 10

8

2 4 1

7 9 3

?

ExtractMax
Return and remove the largest element in the set

14

10

8

2 4 1

7 9 3

?

ExtractMax
Return and remove the largest element in the set

14

10 8

2

4

1

7 9 3

?

3/7/13

8

ExtractMax
Return and remove the largest element in the set

14 10

8

2 4 1

7 9 3

?

ExtractMax
Return and remove the largest element in the set

14 10

8

2 4

1

7 9 3

ExtractMax
Return and remove the largest element in the set

14 10

8

2 4

1

7 9 3

Heapify

ExtractMax
Return and remove the largest element in the set

8 10

4

2 1

14

7 9 3

Heapify

3/7/13

9

ExtractMax
Return and remove the largest element in the set

ExtractMax running time

Constant amount of work plus one call to
Heapify – O(log n)

IncreaseElement

Increase the value of element x to val

16

14 10

8

2 4 1

7 9 3
15

IncreaseElement

Increase the value of element x to val

16

14 10

8

2 15 1

7 9 3

3/7/13

10

IncreaseElement

Increase the value of element x to val

16

14 10

15

2 8 1

7 9 3

IncreaseElement

Increase the value of element x to val

16

14 10

15

2 8 1

7 9 3

IncreaseElement

Increase the value of element x to val

16

15 10

14

2 8 1

7 9 3

IncreaseElement

Increase the value of element x to val

3/7/13

11

Correctness of IncreaseElement

Why is it ok to swap values with parent?

Correctness of IncreaseElement

Stop when heap property is satisfied

Running time of IncreaseElement

Follows a path from a node to the root

Worst case O(height of the tree)

O(log n)

Insert
Insert val into the set

16

14 10

8

2 4 1

7 9 3

6

3/7/13

12

Insert
Insert val into the set

16

14 10

8

2 4 1

7 9 3

6

Insert
Insert val into the set

16

14 10

8

2 4 1

7 9 3

6

propagate value up

Insert Running time of Insert
Constant amount of work plus one call to
IncreaseElement – O(log n)

3/7/13

13

Building a heap

Can we build a heap using the functions we
have so far?

l  Maximum(S)
l  ExtractMax(S)
l  Insert(S, val)|
l  IncreaseElement(S, x, val)

Building a heap

Running time of BuildHeap1

n calls to Insert – O(n log n)

Can we do better?

…

Building a heap: take 2

Start with n/2 “simple” heaps

call Heapify on element n/2-1, n/2-2, n/2-3 …

all children have smaller indices

building from the bottom up, makes sure that all the
children are heaps

3/7/13

14

4 1 3 2 16 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

4

1 3

2

14 8 7

16 9 10

4 1 3 2 16 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

4

1 3

2 16

heapify

14 8 7

9 10

4 1 3 2 16 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

4

1 3

2 16

heapify

14 8 7

9 10

4 1 3 14 16 9 10 2 8 7

1 2 3 4 5 6 7 8 9 10

4

1 3

14

2

heapify

8 7

16 9 10

3/7/13

15

4 1 3 14 16 9 10 2 8 7

1 2 3 4 5 6 7 8 9 10

4

1 3

14

2

heapify

8 7

16 9 10

4 1 10 14 16 9 3 2 8 7

1 2 3 4 5 6 7 8 9 10

4

1 10

14

2

heapify

8 7

16 9 3

4 1 10 14 16 9 3 2 8 7

1 2 3 4 5 6 7 8 9 10

4

1 10

14

2

heapify

8 7

16 9 3

4 16 10 14 7 9 3 2 8 1

1 2 3 4 5 6 7 8 9 10

4

16 10

14

2

heapify

8 1

7 9 3

3/7/13

16

4 16 10 14 7 9 3 2 8 1

1 2 3 4 5 6 7 8 9 10

4

16 10

14

2

heapify

8 1

7 9 3

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

16

14 10

8

2

heapify

4 1

7 9 3

Correctness of
BuildHeap2
Invariant:

Correctness of
BuildHeap2
Invariant: elements A[i+1…n] are all heaps

Base case: i = floor(n/2). All elements i+1, i+2, …,
n are “simple” heaps

Inductive case: We know i+1, i+2, .., n are all
heaps, therefore the call to Heapify(A,i) generates
a heap at node i

Termination?

3/7/13

17

Running time of BuildHeap2
n/2 calls to Heapify – O(n log n)

Can we get a tighter bound?

Running time of BuildHeap2

16

14 10

8

2 4 1

7 9 3
all nodes at the
same level will
have the same cost

How many nodes are at level d? 2d

Running time of BuildHeap2

∑ =
=

n

d
d dOnT log

0
)(2)(

?

Nodes at height h

h=0

h=1

h=2

h

< ceil(n/2) nodes

< ceil(n/4) nodes

< ceil(n/8) nodes

< ceil(n/2h+1) nodes

3/7/13

18

Running time of BuildHeap2

∑ = + ⎥⎥

⎤
⎢⎢

⎡=
n

h h hOnnT log

0 1)(
2

)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥

⎤
⎢⎢

⎡= ∑ = +

n

h h hnO log

0 12
1

⎟
⎠

⎞
⎜
⎝

⎛= ∑ =

n

h h
hnO log

0 2

⎟
⎠

⎞
⎜
⎝

⎛= ∑
∞

=0 2h h
hnO

()nO= ∑
∞

=
=

−
=

0 2 2
)2/11(

2/1
2h h

h

BuildHeap1 vs. BuildHeap2

Runtime
l  O(n) vs. O(n log n)

Memory

l  Both O(n)
l  BuildHeap1 requires an additional array, i.e. 2n memory

Complexity/Ease of implementation

Heap uses

Could we use a heap to sort?

Heap uses
Heapsort

l  Build a heap
l  Call ExtractMax for all the elements
l  O(n log n) running time

Priority queues

l  scheduling tasks: jobs, processes, network traffic
l  A* search algorithm

3/7/13

19

Binary heaps Mergeable heaps

-  Mergeable heaps support
the union operation

-  Allows us to combine two
heaps to get a single
heap

-  Union runtime for binary
heaps?

Union for binary heaps

concatenate the arrays and
then call Build-Heap

Linked-list heap

l  Store the elements in a doubly linked list
l  Insert:
l  Max:
l  Extract-Max:
l  Increase:
l  Union:

3/7/13

20

Linked-list heap

l  Store the elements in a doubly linked list
l  Insert: add to the end/beginning
l  Max: search through the linked list
l  Extract-Max: search and delete
l  Increase: increase value
l  Union: concatenate linked lists

Linked-list heap

Linked-list

Θ(n)

Θ(n)
Θ(1)

Θ(n)
Θ(1)
Θ(1)
Θ(1)

Faster Union, Increase, Insert and Delete… but slower Max operations

Binomial Tree

Bk-1

Bk-1

B0 Bk

B0 B1 B2 B3 B4

