Improving QA Accuracy by
Question Inversion

John Prager, Pablo Duboue, Jennifer
Chu-Carroll

Presentation by Sam Cunningham and Martin Wintz

Goal

e Re-rank answers based on additional “inverted
qguestions” in order to improve accuracy.

* Also: Identify pressing issues related to
question answering (QA)

QA basic framework

N/ N\

query Informatior
processing retrieval

Answer
processing

“Inverted Questions”

* “What is the capital of France?”

e Becomes: “Of what country is Paris the
capital?”

Related Work

 The LCC system (Moldovan & Rus, 2001)
— “Logic Prover”

* Clarke et al., 2001; Prager et al. 2004b

— Assign confidence boost based on redundancy of
answer

Question

System Overview

QS1
QA system

QP

guestion proc.

,

S

search

;

AS

answer selection

CM

constraints
module

QS2
QA system

|
v
S

search

AS

answer selection

» Answers

Inverting the question

* |dentify term with known type (the pivot term)

— For example in: “What was the capital of Germany in
1985” Germany is identified as a (COUNTRY).

* Then given a candidate answer <CandAns>
formulate the inverted question as:

— “Of what (COUNTRY) was <CandAns> the capital in
1985”

Difficulties

* Estimated 79% of question in TREC can be
inverted meaningfully and those questions are
hard to identify.

* Need to have a comprehensive and accurate
notion of types

 Some inverted questions have so many
answers they’re not useful

Inversion Algorithm

* Not actually formulating inversions in natural
language.
e Qframe
— Keywords
— Answertype
— Relationships

Keywords: {1945, Germany, capital }

AnswerType: CAPITAL

Relationships: {(Germany, capital), (capital,
CAPITAL), (capital, 1945)}

V

Keywords: {1945, <CANDANS>, capital }

AnswerType: COUNTRY

Relationships: {(COUNTRY, capital), (capital,
<CANDANS>), (capital, 1945)}

Using the inversion

* |f the answer to an inverted question
(validating answer) matches the original
guestion, that question is validated

e Use this notion of validation, along with the
scores of the validating answers, to re-rank
candidate answers

Using the inversion

* Only concerned with re-ranking top two
results

e Learn a decision tree to decide whether to re-
rank second result as first one

W N ==

)

Decision tree algorithm

If C;=niland V,, return C,
If V,and A; > a;, returnC;
If not V, and not V, and

type(T) € MUSTCONSTRAIN,
return nil
If not V; and not V, and

type(T) € SOFTREFUTATION,
if S; > a,, return C; else nil

If not V,, return C;

If not V; and V, and
A, > asz; and P; < a; and

S;-S2 < asand S, > ag, return C;
If Vi and V2 and

(A2 - P2/d7) > (A] - P]/a7) and
A; <a8andP1 >a9and
Ay, <ajpand P, > a;; and

S]'S2 <dap and (S2 - Pz/a7) > a3,

return C,
else return C;

W N ==

)

Decision tree algorithm

If C; =nil and V,, return C;, Don’t be scared by the
If V;and A; >a;, returnC; variables!

If not V, and not V, and
type(T) € MUSTCONSTRAIN,

return nil * a,: Learned parameters
If not V; and not V; and * C:top two candidate
type(T) € SOFTREFUTATION, answers
if S; > a,, return C; else nil .
If not sz rezt’um C, 1 * S;:Scores of candidate
If not V; and V, and dnNsSwers
A;>asand P, <a,and V. whether C. is validated
S;-S; < asand S, > ag, return C, . P k of validat
If V, and V, and : rank of validating answer
(A2 - Polaz) > (A; - Pilay) and * A Score of validating answer

A; <a8andP1 >a9and

Ay, <ajpand P, > a;; and

S1-82 < aj; and (S; - Pylay) > a3,
return C,

else return C;

Decision tree algorithm

1. IfC;=niland V,, return C, If there is no first answer and the
2. Tand A; > a,, return C,; second answer has been validated
3. Ifnot V, and not V, and return the second answer.

type(T) € MUSTCONSTRAIN,

return nil
4. If not V; and not V, and

type(T) & SOFTREFUTATION,
if S; > a,, return C; else nil

5. IfnotV,, return C;
6. Ifnot V;and V, and

A2 > as ansz <a4and

S;-S2 < asand S, > ag, return C;

(A2 - Pz/a7) > (A] - P1/a7) and

A] <a8andP1 >agand

A2 <dAajp and P, > a;; and

S1-82 < aj; and (S; - Pylay) > a3,

return C,

8. else return C;

Decision tree algorithm

1. = nil and eturn
2| XV and A,>a;, returnC; |
3. not V,; and not V, and
type(T) € MUSTCONSTRAIN,
return nil
4. If not V; and not V, and
type(T) € SOFTREFUTATION,

if S; > a,, return C; else nil

5. IfnotV,, return C;
6. Ifnot V;and V, and

A2 > as ansz <a4and

S;-S2 < asand S, > ag, return C;

(A2 - Pz/a7) > (A] - P1/a7) and

A] <a8andP1 >agand

A2 <dAajp and P, > a;; and

S1-82 < aj; and (S; - Pylay) > a3,

return C,

8. else return C;

If the first answer is validated with a
score above a given threshold return
the first answer.

Decision tree algorithm

1. IfC;=niland V,, return C,
2. IfV.,and A.>a.. return C,
3./ If not V; and not V, and
type(T) € MUSTCONSTRAIN, If neither answers have been
return nil validated, either reject both answers
4. If not V; and not V, and or possibly return the first one
type(T) & SOFTREFUTATION, depending on the type of the pivot

I if S; > a,, return C; else nil I term.

6. Ifnot V;and V, and
A2 > as ansz <a4and
S;-S2 < asand S, > ag, return C;
(A; - PyJay) > (A, - Pj/a;) and
A] <agandP1 >a9and
A2 <dAajp and P, > a;; and
S1-82 < aj; and (S; - Pylay) > a3,
return C,
8. else return C;

W

Decision tree algorithm

1. IfC,=niland V,, return C,
2. IfV,and A;>a;, returnC;
3. Ifnot V,; and not V, and

type(T) € MUSTCONSTRAIN,

return nil

4. If not V; and not V, and

type(T) & SOFTREFUTATION,

if S; > a;, return C; else nil

5. :

If only the second answer is validated
then compare the score of both the
answer and the validating answer.

If not V; 7and V, and‘
A2 > as ansz <a4and

S;-S2 < asand S, > ag, return C;

(A2 - Pz/a7) > (A] - P1/a7) and
A] <a8andP1 >a9and
A2 <dAajp and P, > a;; and
S1-82 < aj; and (S; - Pylay) > a3,
return C,
8. else return C;

W N ==

W

Decision tree algorithm

If C;=niland V,, return C,
If V,and A; > a;, returnC;
If not V, and not V, and
type(T) € MUSTCONSTRAIN,
return nil
If not V; and not V, and
type(T) & SOFTREFUTATION,
if S; > a,, return C; else nil
If not V,, return C;
If not V; and V, and
A2 > as ansz <a4and
S:-S» < a<and S>> a< return C,

If V] and V2 and

(A2 - Pz/a7) > (A] - P1/a7) and

A] <a8andP1 >a9and

A2 <dAajp and P, > a;; and

S]-Sz <daj; and (S2 - Pz/a7) >aj;z,

I return C, I
. 1

If both answers are validated compare
the scores of both the candidate
answers and the validating an:

EVERYTHING

Decision tree algorithm

* Train on TREC11corpus of question-answer
sets to learn threshold values (a,)

Evaluation

* 50 hand-crafted questions of the form “What
is the capital of X?”

* AQUAINT corpus

— ~1 million news-wire documents.

* CNS corpus

— 37,000 documents from the Center for
Nonproliferation Studies.

AQUAINT | AQUAINT | CNS CNS
baseline | w/con- baseline | w/con-
straints straints
Firsts 39/50 43/50 7/23 4/23
(non-nil)
Total 0/0 0/0 0/27 16/27
nils
Total 39/50 43/50 7/50 20/50
firsts
% 78 86 14 40
correct

Table 2. Evaluation on AQUAINT and CNS

corpora.

Evaluation I

* Processed 414 factoid questions from TREC12

Baseline Constraints
Firsts (non-nil) 105 113
nils 3 5
Total firsts 108 118
% correct 26.1 28.5

Table 3. Evaluation on TREC12 Factoids.

Conclusion

* Slight improvement

 Computationally expensive

* Lacks robust notion of term equivalence

Discussion

Probability-based scores

Better confidences

Better NER

Establishing term equivalence

