Hand video

0 http:/ /www.youtube.com/watch2v=-KxjVIaLBmk

PARSING 3

2/21/11

Admin

o Assignment 3 out
1 Due Friday at 6pm

o How are things going?

1 Where we've been

o Where we're going

Parsing evaluation

o You've constructed a parser
o You want to know how good it is

0 ldeas?

2/21/11

Parsing evaluation

Treebank

Train Dev Test

0 Learn a model using the training set

0 Parse the test set without looking at the “correct”
trees

o1 Compare our generated parse tree to the “correct”
tree

Comparing trees

Computed Tree P Correct Tree T
S
N
S VP
VP NP
NP NP P NP PP
PRP VN N N PRE-V.N N

| eat sushi with tuna | eat sushi with tuna

Ideas?

Comparing trees

0 ldea 1: see if the trees match exactly
Problems?
= Will have a low number of matches (people often disagree)

m Doesn't take into account getting it almost right

0 ldea 2: compare the constituents

Comparing trees

Computed Tree P Correct Tree T
S N
S VP
VP NP
NP NP P NP PP
PRP VN N N PR VN NN

| eat sushi with tuna | eat sushi with tuna

How many constituents match?

How can we turn this info a score?

2/21/11

Evaluation measures

Precision
of correct constituents
of constituents in the computed tree
Recall
of correct constituents
of constituents in the correct tree
F1

2 * Precision * Recall

Precision + Recall

Comparing trees

Computed Tree P Correct Tree T
S N
S VP
VP NP
NP NP P NP PP
PRP VN N N PRV N NN

| eat sushi with tuna | eat sushi with tuna

Constituents: 11 # Correct Consti 9 # Consti 10

Precision: 9/11 Recall: 9/10 F1: 0.857

Parsing evaluation

Corpus: Penn Treebank, WSJ

Test: section 23

Parsing has been fairly standardized to allow for easy
comparison between systems

Treebank PCFGs

Use PCFGs for broad coverage parsing
Can take a grammar right off the trees (doesn’t work well):

ROOT
é ROOT — 8
P S—NPVP.
NP VP .
| | |::> NP — PRP
PRP VBD ADJP .
o VP — VBD ADIJP
He was 1)
|
right
Baseline 72.0

2/21/11

Generic PCFG Limitations

o PCFGs do not use any information about where the
current constituent is in the tree

o PCFGs do not rely on specific words or concepts, only
general structural disambiguation is possible (e.g.
prefer to attach PPs to Nominals)

01 MLE estimates are not always the best

Conditional Independence?

S
B
NP VP .
| o |
PRP VBD NP

| | —
She heard DT NN
| |
the noise

Not every NP expansion can fill every NP slot
A grammar with symbols like “NP” won't be context-free

Statistically, conditional independence too strong

Non-Independence

o1 Independence assumptions are often too strong.

All NPs NPs under S

21%

NPs under VP
23%

1%
: 9% 9% 9%

, %
. . -S" a%

NPPP DTNN PRP NPPP DTNN PRP NPPP DTNN PRP

o1 Example: the expansion of an NP is highly dependent on the parent
of the NP (i.e., subjects vs. objects).

o1 Also: the subject and object expansions are correlated

Grammar Refinement

NP VP

PRP VED
| | e
She heard DT NN

|
the noise

PCFG would treat these two NPs the same... but they’re not!
We can’t exchange them: “the noise heard she”

Idea: expand/refine our grammar

Challenges:

= Must refine in ways that facilitate disambiguation

= Too much refinement -> sparsity problems

= To little -> can't discriminate (PCFG)

2/21/11

Grammar Refinement

7

NP
|
PRP
I

She

S

VP

— T
VBD NP
I —_—
heard DT NN
| I
the noise

Ideas?

Grammar Refinement

S
_ —
NP VP
| —_—
PRP VBD NP
| —

|
She heard DT NN

the noise

Structure Annotation [Johnson ‘98, Klein&Manning '03]

= Differentiate constituents based on their local context
Lexicalization [Collins '99, Charniak '00]

= Differentiate constituents based on the spanned words
Constituent splitting [Matsuzaki et al. 05, Petrov et al. '06]

= Cluster/group words into sub-constituents

Less independence

VP

NP

NP

PRP VN IN

| eat sushi with tuna

S -> NP VP
NP -> PRP
PRP -> |
VP ->V NP
V -> eat
= NP -> N PP
N -> sushi
PP ->INN
N IN -> with
N -> tuna

We're making a strong
independence assumption here!

Markovization

0 Except for the root node, every node in a parse
tree has:
A vertical history /context

A horizontal history /context

NP VP

VBD NP NP

Traditional PCFGs use the full horizontal context and
a vertical context of 1

2/21/11

. . . Allows us to make finer grained
Vertical Markovization L
distinctions
o Vertical Markov order: rewrites depend on past k&
ancestor nodes.
. - S
o Order 1 is most common: aka parent annotation [
NPAs VP .
| _ I
Order 1 Order 2 PRP VBD NP#vP
| [—
/SN /SR?OT\ She heard D‘T N‘N
NP 3 B NP'S vP's . .
| | the noise
PRP VED ADIP . PRP VED ADVP'VP .
[AN
He uns g R
Vertical Markovization Horizontal Markovization
0 Horizontal Markov order: rewrites depend on past k
9% ——————————————— 25000 ——————————————— ancestor nodes
;g:: ,, 20000 1 Order 1i diti ingle sibli
7% 1 £ 5000 | o Order 1 is most common: condition on a single sibling
75% -| € 10000 1
74% 7 @ 5000 |
7o] 04 Order 1 Order ®
72%
1 2v 2 3 3 w2z w3 p NP NP
Vertical Markov Ord Vertical Markov Order TN e
ertical Markov Order Wﬁmp NNP NP-».. NNPe NNP NP-—NNP:
NNP NP-:... NNPe NNP NP—NNP NNPe
F1 performance # of non-terminals NNP N'II\IP

2/21/11

Horizontal Markovization

8% ———————————— 12000 -

73% - @ 9000 4
3

72% + 2 6000 ¢
>

71% - ® 3000 -

70% 0

0 1 v 2 inf 0 1 2v 2 inf

Horizontal Markov Order Horizontal Markov Order

F1 performance # of non-terminals

Problems with PCFGs

NP
NP/JC\NP
N | |

NP
NP PP

|
N N Np
NP PP and NNS 1‘ |
L | dogs
ks 1§ R cats NP cc Ne
| | | | | |
dogs in NNS NNS and NNS
|
houses houses cats

1 What's different between basic PCFG scores here?

Example of Importance of
Lexicalization

01 A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG.

1 But the desired preference can depend on specific
words.

SONPVE 00 ohn put the dog in the pen.

S— VP 0.1 l
NP — DetAN 0.5
NP —NPPP 03

NP PropN 0.2 PCFG Joﬁn \/&DP\P
A—e 06 > Parser ’
A—AdjA 0.4 put the dog in the pen

PP—PrepNP 1.0
VPVNP 07
VP VPPP 03

English 27

N

NP

Example of Importance of
Lexicalization

11 A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG.

1 But the desired preference can depend on specific
words.

SSNPVP 09
S— VP 0.1
NP—DetAN 0.5
NP NPPP 0.3
NP — PropN 02
A-e 05 >
A—AGA 04
PP —PrepNP 1.0

ohn put the dog in the pen.
VP VNP 0.7

John 7/ illf
put the dog in the pen
VP— VPPP 03

English 28

Parser

2/21/11

Lexicalized Trees

F e

. P
of R

T @ B

- | N

pe—_—

| i

e wimes

How could we lexicalize
the grammar /tree?

S(questioned)

NP(lawyer) VP(questioned)
DT(the) NN(lawyer) /\
| | Vi(questioned) NP(witmess)
the lawyer
questioned ey NN(witness)
|
the witness

Lexicalized Trees

o Add “headwords” to :
each phrasal node W///\w
Syntactic vs. semantic TN
heads & wde
weenet o
Headship not in (most) WA
treebanks i
Usually use head rules, e.g.: Squestioned)
u NP:
Take leftmost NP
Take rightmost N*
Take rightmost 11 NP(lawyer) VP(questioned)
Take right child -
DT(the) NN(lawyer)
= VP: . (I) k L) Vt(questioned) NP(witness)
Take leftmost VB’ the lawyer
Take leftmost VP questioned

DT(the) NN(witness)
Take left child

the witness

Lexicalized PCFGs?

Problem: we now have to estimate probabilities like
VP(put) — VBD(put) NP(dog) PP(in)
How would we estimate the probability of this rule?

Count(VP(put) -> VBD(put) NP(dog) PP(in))

Count(VP (put))

Never going to get these automically off of a treebank
Ideas?

One approach

1 Combine this with some of the markovization
techniques we saw

o Collins’ (1999) parser

Models productions based on context to the left and the
right of the head daughter.

®LHS — L L ...L,LHR,..R_,R

2 Bm-10%m

First generate the head (H) and then repeatedly
generate left (L) and right (R,) context symbols until the
symbol STOP is generated.

2/21/11

Sample Production Generation

Note: Penn treebank tends to
VPput — VBDput NPdog PPin have fairly flat parse trees that

produce long productions

VPput — STOP VBDput NPdog PPin STOP
L

/ " p k2)
P,(STOP | VPput) * P (VBD | Vpput)* / /
Pr(NPdog | VPput)*

Pr(PPin | VPput) * P.(STOP | PPin)

Estimating Production Generation Parameters

o Estimate Py, P,, and P, parameters from treebank data.

Count(PPin right of head in a VPput production)

Pe(PPin | VPput) =
Count(symbol right of head in a VPput-VBD)

Count(NPdog right of head in a VPput production)

Pe(NPdog | VPput) =
Count(symbol right of head in a VPput)

* Smooth estimates by combining with simpler
models conditioned on just POS tag or no lexical
info

smP(PPin | VPput-) = A, Pe(PPin | VPput)

+ (1-N;) (A, P(PPin | VPVBD) +
(1- &,) Pe(PPin | VP))

Problems with lexicalization

o We've solved the estimation problem
0 There’s also the issue of performance

0 Lexicalization causes the size of the number of
grammar rules to explode!

o Our parsing algorithms take too long too finish

0 ldeas?

Pruning during search

© We can no longer keep all possible parses around
© We can no longer guarantee that we actually return
the most likely parse
1 Beam search [Collins 99]
In each cell only keep the K most likely hypothesis

Disregard constituents over certain spans (e.g.
punctuation)
F1 of 88.6!

2/21/11

Pruning with a PCFG

The Charniak parser prunes using a two-pass
approach [Charniak 97+]
First, parse with the base grammar
For each X:[i,j] calculate P(X|i,j,s)
This isn't trivial, and there are clever speed ups
Second, do the full O(n%) CKY
Skip any X :[i,il which had low (say, < 0.0001) posterior
Avoids almost all work in the second phase!

F1 of 89.7!

Tag splitting

Lexicalization is an extreme case of splitting the
tags to allow for better discrimination

Idea: what if rather than doing it for all words, we
just split some of the tags

Tag Splits

Problem: Treebank tags T
are too coarse TIO v
to VB SBAR
\
. ee IN'SNT
Example: Sentenﬂ't:fl, PP, « A
and other prepositions are if NlT’ V|T’
all marked IN NN VBZ
advertising works
Partial Solution:
Subdivide the IN tag Annotation [F1__ | Size
Previous 78.3 |8.0K
SPLIT-IN 80.3 |[8.1K

Other Tag Splits

F1 Size

UNARY-DT: mark demonstratives as DT U (“the X” |80.4 |8.1K
vs. “those”)

UNARY-RB: mark phrasal adverbs as RB*U 80.5 [8.1K
(“quickly” vs. “very”)

TAG-PA: mark tags with non-canonical parents 81.2 |8.5K
(“not” is an RBVP)

SPLIT-AUX: mark auxiliary verbs with —AUX [cf. 81.6 |9.0K
Charniak 97]

SPLIT-CC: separate “but” and “&” from other 81.7 19.1K

conjunctions

SPLIT-%: “%" gets its own tag. 81.8 19.3K

10

Learning good splits:
Latent Variable Grammars

s1
NPO vf—l B
S PRP-1 VBD-0 ADJPO .
e~ | D
NP VP) He was right
| —— |
PRP VBD ADJP . o
| | _ — —

He was right o
PRP-0 VBD-0 ADJP-1

He was right

Parse Tree T
Sentence Derivations ¢ : T'

Grammar G

So— NP, VP,

Sy — NP, VP,
So — NP, VP,
So — NP, VPy
S, — NP, VP,

S, — NP, VP,
NP, — PRP;
NP, — PRP;

Lexicon

PRP; — She

PRP; — She

VBD, — was
VBD; — was
VBD, —» was

Parahéters 0

N

~

?

?
?
?

2/21/11

11

