
Compuer Science 62

Assignment 8

Due 11:59pm on Tuesday, April 13, 2010

In this assignment, you will create a priority queue that will be modified

for use in later assignments. You are asked to construct a correct, general,

robust, and elegant data structure. You may want to write a small program

to test it, but the product will be just the header file and the implementation

file for priorityqueue62 named, naturally enough, priorityqueue62.h

and priorityqueue62.cpp. This will also give you some practice in reading

and using documentation.

Getting started

Begin by reading about assertions in C++. Their purpose is the same as

assertions in Java, and the notation is not very different. See pages 159–160

in Weiss’s book or look in the C library pages on the C++ reference site

(i.e. “cassert”).

Then read about the STL classes vector and map and the pair class

(which you can find by doing a search in the reference pages for search).

Priority queue

We want a build a priority queue that stores pairs of integers, each pair

consisting of a unique number key and a non-negative, integer priority. The

queue will allow us to insert pairs, to remove the pair with lowest priority,

and to reduce the priority in an existing pair. Note that we are storing a

pair in our priority queue if that wasn’t clear :)

A header file is available at:

1



/common/cs/cs062/assignments/assignment9/

The public members, described below, are required:

priorityqueue62() The default constructor creates an empty priority

queue.

~priorityqueue62() The destructor must match the implementation and

recycle all dynamically-created objects. In our case, we don’t cre-

ate any dynamically-created objects, so this should be very simple

:). We didn’t have a chance to talk about it in class so, just put

“priorityqueue62::~priorityqueue(){}” in your .cpp file and it

should wor k.

void push(int key, int priority) We adopt the push-pop language of

the STL’s priority queue. This function inserts a new element with

a given key and priority. The key must not already appear in the

queue, and the priority must not be negative. Use assert statements

to check these and other explicitly-stated preconditions.

void pop() This function removes the element with smallest priority. No

value is returned. It is an error to pop from an empty priority queue.

int top priority() const In the STL priority queue, the function

top() returns the element of least priority. Instead of returning a

pair, we have two “top” functions that return integers. This one gives

the least priority value.

int top key() const This “top” function gives the key of the element of

least priority.

void reduce priority(int key, int newpriority) This function low-

ers the priority of a specified element. It is an error if the key is not

present in the priority queue, or if the new priority is negative or is

greater than the current priority.

int get priority(int key) This function returns the priority of the ele-

ment with the specified key. It returns −1 if the key is not present in

the priority queue. Technically, we should make this method const,

since it does not modify the priority queue, however, this will make

life easier for you.

2



bool is empty() const This function tells us if the priority queue is

empty.

bool is present(int key) const This function returns true if there is

an element in the queue with the specified key.

void clear() This is a straightforward method that empties the priority

queue.

int size() const This is a function that returns the number of elements

in the queue.

The supplied header file suggests an implementation that uses a heap-or-

dered vector as we did in our ArrayListPriorityQueue in class. The only

additional complication is that this implementation must be able to locate

a particular key in the heap. An additional data structure, a map from keys

to heap indices, will do the trick.

I’ve included some private member variables and some private methods

headers that may be useful to define. If you don’t want to use these, that’s

fine, just change the header.

You may choose a different implementation. If you do, you will have to

change the private part of the header.

Whatever your implementation, all of the functions must work (cor-

rectly!) in logarithmic time. In other words, linear search for a key

across a vector is not permitted. As stated in the STL documentation, the

map operations are guaranteed to run in logarithmic time.

Submission

Submit two elegant and well-documented files, priorityqueue62.h and

priorityqueue62.cpp. Since we’re no longer exporting from Eclipse and

creating jar files, just make a directory with your name and assignment

number and put your files in there and copy to the dropbox as before. This

will be the approach we will take for all of our C++ submissions.

Even though we’re writing in C++, you are to continue to comment your

code as before using the Javadoc style of commenting.

3



Grading

criterion points

functionality 12

assert error checking 2

appropriate comments (including JavaDoc) 2

style and formatting 1

submitted correctly 1

Some hints

• Try and follow the outline from our existing binary heap.

• As always, try and code incrementally, testing and compiling as you

go.

• Use cout to help you debug (but remove these when you submit your

final version).

• The one challenge with this assignment beyond the C++ part, is keep-

ing the map (i.e. hashtable) up to date when you change the heap.

Think about exactly what you are storing in the map to make methods

efficient.

• If you have a pair object, you can simply access the two elements of

that object using .first and .second. Look at the examples in the

documentation.

4


