
CS 51 Spring 2010

CSCI 51 Laboratory # 1
An Introduction to Java and the ObjectDraw Library

Due: Monday 1/25 at 11pm

Objective: To demonstrate the use of the lab computers, Java and graphics primitives

—
This lab will introduce you to the tools with which you will be working this semester. Your task is

fairly simple. You will construct a Java program that draws an image resembling a roadside warning
sign, but with a message more appropriate for a computer screen, as shown below.

First you will need to determine the Java commands required to draw such a picture. Then you will
write a Java program that draws and modifies the picture in simple ways in response to actions the
user performs with the mouse.

Part 1. An Interactive Introduction to the ObjectDraw Primitives

To help you learn the primitives for creating graphical objects from within a program before dealing
with the details of writing a program, we have constructed an environment in which you can exper-
iment interactively with the graphics primitives. This environment is a program that lets you create
and modify objects by clicking buttons and filling in fields that describe the locations and dimensions
of the objects. If you think of this program as a drawing program (like Adobe Illustrator) you will
quickly conclude it is the worst drawing program in the world. Its interface is designed specifically to
use mechanisms similar to those you will use from within your programs, and certainly not for usability
as a drawing program. Hence its name: NotPhotoshop.

1

CS 51 Spring 2010

This part of the lab involves two steps: (i) completing a tutorial on NotPhotoshop and (ii) using it
to draw your own rendition of our “no clicking” sign.

To start, you must log in to one of the iMac computers in our lab.

Begin by entering the user name and password that you were provided for your computer science
account in the login window and click “Log in”. Once you log in, the screen should display a window
containing icons for some of the files you can access on the machine.

Before proceeding, you should change the password we assigned to your account to something that
only you will know and that will be easier for you to remember. Don’t, of course, make your new
password too easy to guess. In particular, at least use something that is a mix of letters and numbers.

To change your password you should:

• Click on the compass icon at the bottom of your screen. That will bring up the
Safari web browser.

• Go to http://www.dci.pomona.edu

• On the left margin of the resulting page, select the item “Change Password”. (If you get prompts
about the “login” keychain, press cancel until they go away.)

• Type in your user name and current password, and then a new password (twice).

• Click “Change password”.

Now, log out and log in again with your new password. To log out select the last item, “Log Out”
in the apple menu near the upper left corner of your screen. Click “Log Out” when it asks if you are sure.

The files you create for our course laboratory projects will not actually be stored in the computer
on which you are working. Instead, they will be stored on our department’s file server. By entering the
account information for your account, you have instructed the computer you are using to access your
files on that server. You can access your files from any computer in our lab by simply logging in to that
computer.

Next observe that there is already a folder labeled “CS51Workspace” on the desktop for your cs51
work. This is where you will do all of your work for this class.

To work on the lab, you will need to move some files from the course folder (named “cs051”, with
a small black arrow in the lower left corner) to your CS51Workspace folder.

1. Double click on the cs051 folder to open it. Double click on the “labs” folder.

2. Drag the “Lab1-NotPhotoshop” folder to the CS51Workspace folder on your desktop

3. Close the “labs” folder by clicking in the red circle in the upper left corner of that window.

2

CS 51 Spring 2010

Go to your CS51Workspace folder and double click on “Lab1-NotPhotoshop”. There should be
an item named “NotPhotoshop.jar”. To run NotPhotoshop, double-click on that item. Our drawing
program will display a large window on your screen that should look like this:

The components in this window are divided into five main units.

The Drawing Window The large rectangle appearing on the upper portion of the right side of the
window is the area in which the drawing you create will appear.

The Mouse Tracker As you move the mouse about in the drawing window, the coordinates of the
mouse’s position within the window will be displayed next to the labels “x” and “y” that appear
immediately below the drawing window. Try it! You will often need the coordinates of screen
locations to control the placement of the objects you want to create.

The Object Constructor The shaded area just below the mouse tracker contains the mechanisms
you will need to describe and create the components of a drawing. The layout of the items in
this region is designed so that the form of the information you input to create an object within
this program will resemble the text you would have to enter to create a similar object if you were
actually writing a Java program.

The Method Invocation Buttons There are a number of methods you can apply to modify or
obtain information about any of the graphical objects you create in a program. The collection of
buttons below the constructor can be used to apply such methods to any of the objects currently
present in the drawing window.

3

CS 51 Spring 2010

The Output Area Of course, things can go wrong. If you specify some improper information when
trying to create or modify an object, the system will display a brief message in the output area
that appears along the left margin of the program’s window. This area is also used to display
descriptions of object properties requested by pressing certain method invocation buttons.

Creating Graphical Objects

To see how all these components work, let’s add an object to the display.

You can begin by specifying the object type. The type of object to be created is controlled by
the pop-up menu located just to the right of the word “new” in the constructor area. By default, the
program starts with the “FramedRect” item selected in the menu. If you depress the mouse on the box
labeled “FramedRect”, a list of the other choices will appear. Six options are available:

• FramedRect

• FilledRect

• FramedOval

• FilledOval

• Line

• Text

Using the mouse, select “Line” instead of “FramedRect”. As you do this, notice that the labels on
the text entry boxes to the right of the menu change to reflect the kinds of information you need to
enter to specify the appearance of a line rather than a rectangle. For a framed rectangle you need to
enter the coordinates of its upper left corner and its width and height. For a line you need to enter
the coordinates of two points — its end points. Use the menu to select other options to see what
information they require. To display a piece of text you enter the text to be displayed (although the
box for entering the text is rather small) and the coordinates of the upper left corner of the rectangle in
which the text should be placed. Ovals require the same input as rectangles; the values that you enter
for an oval define rectangular bounds within which the oval is drawn.

To continue, make sure that “FramedRect” is the selected menu item. Fill in the boxes to the right
of the menu with values to create a 100x100 rectangle at a location 70 pixels from the top of the drawing
area and roughly centered between the left and right boundaries of the drawing area. To determine
the actual x value to enter for this rectangle, position the mouse cursor where you estimate the left
edge of the rectangle should be and use the “mouse meter” to determine the x coordinate of that point.
Enter this value in the box labeled “x” immediately to the right of the menu. Then enter 70 as the “y”
coordinate and 100 for both the width and height.

Once all these values have been entered, press the “Construct” button and the rectangle will appear.

Changing Object Attributes

When your rectangle appears, it is “decorated” with small black boxes on the edges and corner, indi-
cating that it is the “selected” graphical object. By default, the most recently constructed object will

4

CS 51 Spring 2010

be selected. When multiple objects are displayed, you can change the selected object by clicking within
the object you wish to select.

The buttons below the object construction controls can be used to modify the currently selected
object. For example, if your rectangle isn’t positioned quite where you wanted it, you can move it
around using the “move” and “moveTo” buttons. To try this out:

• Press the “move” button once.

• Enter the amount to move horizontally in the x box and the amount to move vertically in the
y box. Positive values will result in motion to the right and down the screen. If you just want
the rectangle to move in one direction, enter 0 as the value for the other direction. If you want
to move an object to the left or up, enter a negative value. If you are already pretty happy with
your rectangle’s location, enter small values (3 or 4).

• Press “OK” and watch the rectangle move.

If you enter any invalid information, a brief message will be displayed in the output area, and the
dialog box will remain on the screen so that you can correct the error. Common errors include entering
non-numeric characters in numeric fields or leaving fields blank.

As with object construction, the text shown in the “move” dialog box is designed to resemble the
text you would include in a program if you wanted to instruct the computer to move an object.

If you press “moveTo”, you will be asked to specify new coordinates for the origin of the selected
object. In the case of a rectangle, the rectangle will be moved so that its upper left corner is placed
at the specified point. The “setWidth” and “setHeight” buttons invoke methods that let you change
the dimensions of an object. They display a dialog box in which you must enter the new value to be
used for the dimension being changed. Of course, it is not possible to set the width or height of a Line.
If you try to use setWidth or setHeight while a Line is the selected object, the program will simply
display a complaint in the output area.

There is one other button that allows you to change the appearance of an object after it is created. If
you find your black rectangle boring, you can easily change its color by pressing the “setColor” button.
To do this:

• Click once on the “setColor” button. A dialog box will appear.

• Select one of the colors listed in the dialog box (I like orange) by clicking on its name and then
click the “OK” button.

The dialog that appears when you use the setColor button does not attempt to present a display that
mimics what you would use to change the color of an object from within a program. The conversion,
however, is simple. The items within the dialog box are each a color name preceded by the word
“Color”. If “selected” is the name of an object whose color you want to change to yellow, then within
your program you would just type

selected.setColor(Color.yellow);

Later in the semester, you will see how to select colors other than the small set with which names are
associated.

5

CS 51 Spring 2010

Determining Object Attributes

After you have moved an object up and down a few times to get it right where you want it, you may
not actually know where it is. That is, you may not know the exact coordinates of its upper left hand
corner or remember its dimensions. Luckily the computer knows and will tell you if you press the
correct buttons. The “getLocation” button near the right end of the top row of buttons will display
the x and y coordinates of the upper left corner of any object (except a Line). Try it. The coordinates
will be displayed in the output area. Similarly, the “getHeight” and “getWidth” buttons can be used
to determine the dimensions of such objects.

To determine the endpoints of a Line, you can use the “getEnd” and “getStart” buttons. You can
set the endpoints of a Line using the “setEndPoints” button. Finally, you can determine the color of
any object by clicking on the “getColor” button.

As with the other buttons, these buttons correspond directly to operations you can perform within
a Java program. Within a few days, we will discuss how information returned by these methods can be
used within a program.

Working with Multiple Objects

The remaining method invocation buttons are relevant primarily when you are working with a drawing
composed of multiple overlapping objects. To demonstrate, let’s create another object.

Create an oval and position it so that it overlaps with your rectangle.

• Select the “FilledOval” choice from the pop-up menu in the object creation area.

• Press the “getLocation” button to determine the current location of the rectangle.

• Enter a value 5 to 10 units smaller than the x coordinate of the rectangle as the x coordinate for
the new oval.

• Enter a value 5 to 10 units larger than the y coordinate of the rectangle as the y coordinate for
the new oval.

• Set the width and height for the oval to 85 by 85.

• Press “Construct”.

If you entered all the coordinates and dimensions properly, then the image in your drawing area
should look something like this:

6

CS 51 Spring 2010

The new oval is now the selected object. Its bounding rectangle is decorated with eight small black
boxes.

You can now use the mouse to change the selected object.

• Move the mouse so that it is within the original rectangle but outside the bounding box of the
oval,

• Click the mouse once. The eight small boxes now move to the edges of your original rectangle,
indicating that it is selected.

• Move the mouse back into the center of the oval and click again to make it the selected object.

In addition to being selected, a new object (like the oval) is located logically “on top of” previously
created objects (like the rectangle). Notice that where the rectangle’s left edge overlaps the oval, all
you see is the black interior of the oval, obscuring that part of the rectangle. Since the oval is logically
above the rectangle, it hides that part of the edge of the rectangle.

There are buttons in the program’s controls corresponding to two methods you can use within
a program to alter the logical stacking of graphical objects. They are labeled sendBackward and
sendForward. To see how they change the stacking:

• Make sure the oval is the selected object.

• Press “sendBackward” once to move the currently selected object (the oval) to the bottom of the
stack. Now, the left edge of the rectangle should appear to run through the oval.

• Now press the “sendForward” button to see it move back.

When multiple objects overlap, you may need to use the “send” buttons to change the selected
object. If you can’t click on the object you would like to select because it is obscured by another object,
first select the other object and use “sendBackward” to move it beneath the object you wish to select.
Then click to select the object you desire.

You can think of each object as being drawn on a separate, large sheet of transparent plastic and the
image you see is produced by stacking all these sheets of plastic. Changing the stacking is like pulling
out the selected sheet of plastic and moving it up or down the stack. This stacking happens even if the
objects do not overlap on the screen. Try this:

• Use the mouse and the “send” buttons to ensure that the oval is on top of the rectangle and
selected.

• Use the “move” button to move the oval right 150 units (enter 0 for the change in the y coordinate).

• Now, press the “sendBackward” button. Nothing in the display will appear to change.

• Move the oval left 150 units, to its original position. You should discover that it is now below the
rectangle in the stack.

7

CS 51 Spring 2010

Hiding and Removing Objects

There are two ways to make an object no longer appear in the canvas: hiding the object and removing
the object from the canvas. Hiding the object makes it invisible, but a subsequent “show” operation
will make it visible once more. Removing the object permanently removes it from the canvas. We
discuss only hiding in today’s lab. While both of these options will be available to you when you write
programs, only hide and show can be accessed using NotPhotoshop.

So, let’s see what happens if we hide the oval. To do this:

• First, make sure that the oval is selected.

• Press the “hide” button. The oval disappears, but it is still the selected object. As a result, while
you can not see the oval, you can see its bounding box!

• Click the “show” button. Since this oval is still the selected object, “show” makes it reappear.

• Click “hide” again.

• Now, select the rectangle by clicking somewhere inside the rectangle but outside the oval’s bound-
ing box.

• Try re-selecting the oval by clicking in its previous location. You can select a hidden object as
long as it is not hidden under some other object. Once selected, you can make it visible again by
clicking “show”.

Draw Your Sign

You are now ready to construct a rendition of the no-clicking sign shown at the beginning of this
document. The interior of the sign should be colored yellow like a good warning sign. You can’t tell
this looking at the black-and-white printed version of this writeup, but that is how it appears on the
on-line version. To produce such a sign you will use a “FilledRect” for the sign’s background and a
“FramedRect” for the edge. If you run into problems, ask your instructor or a teaching assistant for help.

When you are done, DO NOT QUIT THE DRAWING PROGRAM! You will need the picture
you have created for the next task.

Part 2. Writing a Java Program

Now, you will construct a Java program to draw the warning sign you have constructed. You will do this
using a program named Eclipse which provides everything you need to type in and run Java programs.

The construction of a single Java program involves the use of several files. One file will contain Java
code, the actual text of your program. Another file is required to tell the Java system run time details
like the size of the window your program should be given. In addition, access to many of the facilities
of Java and our graphics system are provided through other files, including “objectdraw.jar”.

First, you must start Eclipse by clicking on the Eclipse icon at the bottom of the screen.
The first time that you run Eclipse, it may ask you what folder you want to use as the “workspace”

8

CS 51 Spring 2010

where it stores files it needs. If it asks, tell it to use the folder ”CS51Workspace” on your desktop.

In the Eclipse window, pull down the “File” menu and select “Import...” from near the bottom
of the menu. Select “Existing Project into Workspace” and click the “Next” button. [You may have
to click on the triangle next to “General” to see the ”Existing Project . . . ” entry.] Now, click the
“Browse” button to the right of the “Select root directory” entry, and navigate to your CS51Workspace
folder. (Hint: double-click on “Desktop” if you seem lost.). Click on CS51Workspace and then on
“Lab1-NotPhotoshop”. Select the “NoClicking” folder and then push “Choose.” Make sure the box to
the left of “NoClicking” under projects is checked, and then push the “Finish” button.

On the left side of the Eclipse window, in an area called the “Package Explorer” you should now see
an entry for “NoClicking”. Click once on the triangle to the left of “NoClicking” and then once on the
triangle to the left of “(default package)”. Then double-click on “NoClicking.java”. At this point your
Eclipse window should look similar to the image shown on the next page.

This window has three main regions. On the left, it displays the names of files and their contents in
an outline form. The item of interest here is the file in which you will place your Java code, “NoClick-
ing.java”. You will not need to change the other items listed.

The large area on the top right side of the screen displays the contents of “NoClicking.java” file.
The text of the program as it should initially appear is shown in the figure on the next page.

The text we have placed in “NoClicking.java” is the skeleton of a complete Java program. It in-
cludes the header for the definition of a class NoClicking that extends WindowController and within
the class, headers for the event handling methods you will use. We have not, however, included any
Java commands within the bodies of these methods, only a Java comment that reminds you when the
Java system will follow any instructions you might add to the method body.

You should follow our lead and begin writing your program by typing comments rather than actual
Java commands. Near the top of the file we have included a temporary comment telling you to enter
your name, lab section and the current date. Such identifying comments are always good practice, and
in a class like this they make the grader’s job much easier. Eclipse provides the familiar capabilities of a
typical word processor or text editor. You can position the cursor using the mouse or arrow keys. You
can enter text and/or cut and paste text using items in the edit menu. Use these features to replace
our comment with your name, etc.

Next, you will add Java instructions to the body of the onMouseClick method that will draw a “no
clicking” warning sign. This is the first method skeleton we have included in “NoClicking.java”.

As a first step, let’s add the single instruction needed to draw the rectangle that frames the contents
of the sign. The form of the command you will need to enter is:

new FramedRect(..., ..., ..., ..., canvas);

where all the ...’s need to be replaced by the numbers describing the position and size of the rectangle.
This line should be placed immediately after the comment line in onMouseClick (i.e., just before the
line containing the “}” that ends the method body).

If you remember all the values that should replace our dots, just type them in where we have shown
the dots. Otherwise, you can return to the NotPhotoshop program you used in the first part of the lab

9

CS 51 Spring 2010

10

CS 51 Spring 2010

import objectdraw.*;

import java.awt.*;

// CS 51 Laboratory 1 --- practice program

// Enter your name, lab section and the date here.

public class NoClicking extends WindowController{

public void onMouseClick(Location point)

{
// commands placed here are executed after the user clicks the mouse

}

public void begin()

{
// commands placed here are executed when the program begins to execute

}

public void onMouseEnter(Location point)

{
// commands placed here are executed when the mouse enters the program window

}

public void onMouseExit(Location point)

{
// commands placed here are executed when the mouse leaves the program window

}

public void onMousePress(Location point)

{
// commands placed here are executed when the mouse button is depressed

}

public void onMouseRelease(Location point)

{
// commands placed here are executed when the mouse button is released

}

}

11

CS 51 Spring 2010

to determine the values:

• Switch back to NotPhotoshop by either clicking any portion of its window that may still be visible
on your screen, or by clicking once on the cup labelled “Class Lab” in the dock at the bottom of
the screen.

• Select the framing rectangle.

• Press the “getLocation”, “getWidth”, and “getHeight” buttons. The coordinates and dimensions
of the rectangle will be displayed in the output area.

• Return to Eclipse by clicking on its window or its icon in the dock.

Use Eclipse to add a new FramedRect command to your program with the appropriate values.

As you type this code, you will discover that Eclipse tries to understand what you are typing as you
type it. After typing, FramedRect, it will have a squiggly line under it. When you type the “(“, Eclipse
will automatically provide the “)” and the squiggly line will go away. If you make a mistake entering
the parameters for FramedRect, the entire line will be underlined and an icon will appear in the left
margin indicating there is an error on that line. If you move the mouse over this icon and leave it there

for a second, a message will pop-up describing the error. If the icon is , you can then click on the
icon and another message will appear that offers choices on how to fix the error. If one of these looks
like a change you would like to make, you can double click on it and Eclipse will make the change for

you. (If the icon is , there are no automatic corrections available, but it will still show you a message
describing the problem.) Understanding these messages will get easier as the semester progresses.

Take your time when Eclipse reports errors. First, errors often occur simply because you are in the
middle of doing something and these errors go away when you complete the task. So, it is generally
a good idea to ignore the warnings that come up while you are editing. Second, read the messages
carefully. They often have good advice. (But not always! Computers are often not very smart in the
ways we’d like them to be!) Third, before selecting a change to be applied automatically, make sure
you understand Eclipse’s suggestion. If you don’t understand it, it’s probably not the right thing to do!
Ask an instructor or lab assistant for help.

Your rectangle constructor should now be below the comment in the onMouseClick method. Now
that it does something, it would be a good idea to update the comment in the onMouseClick method to
say what it does so far. Replace our comment with something more appropriate, like “draws a rectangle
when the mouse is clicked”. You should get in the habit of updating comments to keep them as accurate
as possible as you add instructions to your programs. Not only does this mean you will not have to go
back and add comments when you’re done, it will help you to remember what everything does as you
are writing your programs.

By the way, I prefer to see comments in the line above the method header. I put them in the body
here just so it would be clearer that the code goes between the ““ and “” after the method header.
Please move the comments to the line before each method.

Before running your program, make sure Eclipse has not found any errors. Save your program by
selecting “Save” from the “File” menu. Eclipse now performs even more checks than it does as you are
typing. If it finds any problems, it will display them in the “Problems” area at the bottom right of the

12

CS 51 Spring 2010

screen (you may have to click on the tab) and also put an icon in the left margin on lines that have
errors. If the problem list is not empty, fix the problems that Eclipse has found (for now you can ignore
the warning that says “The input java.awt is never used.” It may disappear while you’re coding; can
you figure out what line of your code caused the change?).

Once all the problems are fixed, you can run your program. Before running the program the first
time, you should create a configuration to run as follows:

• Open the Run menu.

• Select “Run Configuation”

• Make sure that the Name field at the top, the Project, and the Applet class all say NoClicking.

• Click on the Parameters tab.

• Enter 700 for the width and 450 for the height.

• Click the Apply button and then the Run button.

Note that you only need to create a configuration the first time. Thereafter, you can run your
program by clicking on the icon of a white triangle in a green circle that appears in the icon list at the
top of the Eclipse window.

Make sure to save changes before trying to run, otherwise you’ll get assorted prompts from Eclipse.

When your program runs, a new window titled Applet Viewer: NoClicking.class will appear
on your screen. This is your program’s window. It should appear blank at first. Move the mouse
into the window and click, and a rectangle should appear because Java invokes your onMouseClick
method, which includes the instruction to construct a rectangle. If this happens, smile. If not, select
“Quit” from the “Applet” menu to leave your program. This will bring you back to Eclipse. Examine
the instructions you typed carefully to see if you can find any mistakes. If so, correct them and select
“Run” again. Otherwise, ask your instructor or a lab assistant for help.

When you ask Eclipse to “Run” your program, it starts up a new applet program that is separate
from the Eclipse application. While this program is running, you can return to Eclipse by just clicking
on any portion of the Eclipse window that is visible on your screen. However, to avoid confusion, it is a
good idea to “Quit” the old copy of your program that Eclipse created before asking Eclipse to “Run”
your program again and create a new copy.

Once your rectangle program is working, you should add more instructions to it to turn it into a
complete warning sign drawing program. Back in Eclipse, immediately beneath the line you added to
draw the rectangle, add additional lines to create new Text(...), a new FramedOval(...) and all the
other components you created using our NotPhotoshop program. In the NotPhotoshop version of the
drawing, we told you to have a yellow background for the sign. Leave that part out of the version your
program draws for now; we will add it later. Again, you may want to refer back to NotPhotoshop’s
“getLocation” and related method buttons to help you figure out the coordinates and dimensions to
use for each object. As you work, it is a good idea to “Run” your program every time you add a line
or two to ensure that you catch mistakes early. Also, make sure your comment line gets updated by
the time you are finished. When you are done, your program should draw a sign when you click in the
window, and then do nothing until you tell it to quit. In reality, the program draws another copy of the

13

CS 51 Spring 2010

sign each time you click, but you can’t tell, as each new sign is drawn exactly on top of the previous one.

Making Your Program Responsive

Now, to explore event handling methods a bit more, revise your program so that it reacts to the mouse
in more interesting ways. In the revised version, the sign will be drawn as soon as the program begins
to run. The sign will change, however, as the program runs. In particular, when the user moves the
mouse into the program window or presses the mouse, your revised code will alter the appearance of
the sign.

Making the program draw the sign when it first starts is easy. You initially placed the code to draw
the sign in the onMouseClick method. There is a skeleton for a method named begin immediately
after the onMouseClick method definition in the “NoClicking.java” file. As you might guess, the in-
structions in begin are followed when your program first begins to run. Use cut and paste to move
all the drawing instructions from the onMouseClick method into the begin method. Don’t forget to
update your comments. Run your program again. It should now display the sign even if you don’t click
the mouse.

Notice that it makes more sense logically to have the begin method occur before the onMouseClick
method. We arranged them in the opposite order so that you would be able to find onMouseClick more
easily. The point is that the computer does not care which order you write them in your program. Only
the names are important (though we urge you to put them in a logical order so that it will be easier
for all of us to read!). The order of instructions within a method is important, but the order in which
you define the methods within the program is not.

Making the sign change in response to the mouse is a bit trickier. Suppose, for example, that you
want to emphasize the sign’s warning by changing the color of the word “CLICKING” from black to
red when the user moves the mouse into the program’s window. As you saw in NotPhotoshop, there is
a setColor operation that you can use to change the color of the text. There is also an obvious place
to tell Java to make this change. The onMouseEnter method is executed whenever the mouse moves
into your program window. Placing an appropriate setColor in that method would do the trick.

The problem is that you can’t simply say setColor in the onMouseEnter method. If that was all
you said, Java would have no way of knowing which of the several objects’ color to change. It could
change the rectangle, the oval, the text, all of them, etc. Your code has to be more specific and identify
the object that should change.

To be able to specify the text object as the object whose color we wish to set, we will have to give
it a name. We will use the name message, but we could use any name that seems appropriate.

Associating a name with an object requires two steps. First, we have to include a line that declares
or “introduces” the name. This line informs Java that we plan to use a particular name within the
program. At this point, we don’t need to tell Java which object it should be associated with, but we do
need to specify which sort of object it will eventually be associated with. We plan to associate the name
message with an object created as new Text, so we have to tell Java that the name will be associated
with a Text object. The form of a Java declaration is simply the name being declared preceded by
the keyword private and by the type of object with which it will be associated. So, the form for our

14

CS 51 Spring 2010

declaration is:

private Text message;

You should add a line containing this declaration to your program immediately before the heading of
the onMouseClick method.

Now you have to tell Java which object to associate with the name message. Your program currently
contains a construction of the form:

new Text("CLICKING", ..., canvas);

that creates the text on the screen. To associate the name message with the text object this line creates,
revise this line so that it looks like:

message = new Text("CLICKING", ..., canvas);

This is an example of a construct called an assignment statement. It tells Java that in addition to
creating the new object, it should associate a name with it. Shortly, you will convert some of your other
constructors into assignments.

Now that the text has a name, we can use the name to change its color. Within the body of the
onMouseEnter method add the line:

message.setColor(Color.red);

Then, run your program (correcting any errors as needed).

NOTE: After you typed “message.”, you may have seen Eclipse attempting to provide help
in selecting a method to call. Of course, Eclipse has no idea that you want to change the
color of “message” until you tell it so, but it does know what types of things you can do with
Text objects. After typing “message.”, if you pause briefly, Eclipse will pop-up a window
showing the names of methods you might call. Initially, it will show all the methods it knows
(lots!), but as you type, the list will get smaller so that it only includes methods starting
with the letters you type. If you like, you can select the method you want to call from this
list instead of typing it out. As your repertoire of methods grows, this can help you when
you can’t recall the exact name of a method.

Another helpful feature is to let you know what types of parameters a method takes. To
see this feature, type “setColor” but leave the parameter list empty. Position the cursor
between the parentheses and type control-space (hold the control key down while hitting
the space bar). A window will popup showing the types of parameters the method expects,
in this case a Color.

The program isn’t quite complete. It draws the sign immediately and makes the text turn red when
the mouse enters the window, but it doesn’t make the text black again when the mouse is moved back
out of the window. You should be able to figure out what to add to make it black when the mouse
exits. Give it a try.

15

CS 51 Spring 2010

To get more practice using names and other event handling methods, we would like you to modify
your program a bit more. First, change the program so that while the user is depressing the mouse
button, the circle with the diagonal line through the text disappears. (Of course, it should reappear
when the mouse is released.) This will require that you declare names for the circle and the line and
associate them with the correct objects. These declarations should appear right after the declaration
of message. Your code to make the objects disappear and reappear goes in the onMousePress and
onMouseRelease methods. You can use the hide and show methods to handle the disappearing and
reappearing.

Finally, add the yellow background to the sign. We didn’t have you do this earlier because we
wanted to discuss associating names with objects. Associate a name with the background rectangle
when you create it and then use the name to set its color to yellow. Think carefully about where to
put this code so that the shapes are stacked in the right order.

Grading Guidelines

In general, about half the points in each lab will be for correct functionality and the other half for the
style you use in writing the program. This lab is worth 10 points, which are distributed as follows:

Table 1: Grading Guidelines

Value Feature
2 pts. Drawing the sign correctly when the program starts
2 pts. Changing the color of the text correctly
2 pts. Making the slash and circle disappear and reappear correctly
1 pt. Meaningful names used in declarations
1 pt. Informative comments
1 pt. Good and consistent formatting
1 pt. Good choice of Java commands

The last point is worth additional discussion. Often there are several Java commands that can
be used to accomplish the same result. It is important to pick the most appropriate commands. For
example, in this lab you could make your circle and slash disappear by sending them behind the
background, but this would not be the best choice as it is not obvious what your intent is and there is
a more direct way of accomplishing the same result.

Submitting Your Work

Congratulations, you have written a Java program! You are encouraged to continue experimenting with
it. Before you do, however, you should submit it as a completed assignment. The submission procedure
is electronic and will be basically the same every week.

• First, return to Eclipse and make sure you included your name and course number in a comment
at the start of the program.

• Next, click on the “NoClicking” project in the Package Explorer panel on the left side of the
Eclipse window.

16

CS 51 Spring 2010

• Now, select “Export” from the “File” menu.

• Click on the triangle next to “General” in the dialog box. Select “File system” and click next.

• Make sure all the files in the dialog on the right hand side are checked, and then click the “Browse”
button next to the “To directory:” entry

• Select “Desktop” from the pulldown menu and click on “Choose”. Then click on “Finish”.

• This should create a new folder called “NoClicking” on the desktop. You should now rename
that folder by clicking on it and pressing return, and typing in a more descriptive name (one that
identifies you and the lab you are working on, such as “Chen-Lab1” – except replace “Chen” by
your name!). Note that dashes in names are OK, but don’t include spaces or periods.

• Quit Eclipse.

• Now open the “cs051” folder icon on the desktop by double-clicking on it. Within the “cs051”
folder you should see a “dropbox” folder.

• Drag the folder you just created into the dropbox folder. When you do this, the computer may
warn you that you will not be able to look at this folder. That is fine. Just click “OK”.

• The folder you created will still show up on your desktop. Drag it into the trash both to save
space and to keep anyone from copying it. (Files in your CS51Workspace folder are protected
so that others cannot read them; so you could alternatively just move your new folder into the
CS51Workspace folder.) Press the right mouse button on the trash icon to bring up a menu and
select “empty trash”.

You can submit your work up to 11 p.m. on Monday night. If you submit it and later discover that
your submission was flawed, you can submit again. We will grade the latest submission made before the
11 PM deadline. The computer may not let you submit again unless you change the name of your folder
slightly. It does this to prevent another student from accidentally overwriting one of your submissions.
Just add something to the folder name (like the word “revised”) and the re-submission will work fine.

When you are done with your session, be sure to log out again by selecting “Log Out” from the
apple menu as you did earlier. Please log out each time you leave as otherwise anyone who sits down
at the computer can get full access to all of your files.

17

