

Linear models

A linear model in n-dimensional space (i.e. n features) is define by n+1 weights:

In two dimensions, a line:

$$0 = w_1 f_1 + w_2 f_2 + b$$
 (where b = -a)

In three dimensions, a plane:

$$0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$$

In m-dimensions, a hyperplane

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_m, label)$:

$$prediction = b + \sum\nolimits_{j = 1}^m {{w_j}{f_j}}$$

if prediction * label \leq 0: // they don't agree for each w_i :

$$w_i = w_i + f_i^*$$
label

$$b = b + label$$

Linear models

Perceptron algorithm is one example of a linear classifier

Many, many other algorithms learn a line (i.e. a setting of a linear combination of weights)

Goals:

- Explore a number of linear training algorithms
- Understand why these algorithms work

Perceptron learning algorithm

repeat until convergence (or for some # of iterations): for each training example (f_1 , f_2 , ..., f_m , label): $prediction = b + \sum_{j=1}^m w_j f_j$

if prediction * label \leq 0: // they don't agree

for each w_i : $w_i = w_i + f_i^*$ label

b = b + label

A closer look at why we got it wrong (-1, -1, positive) $0 * f_1 + 1 * f_2 =$ We'd like this value to be positive 0*-1+1*-1=-1since it's a positive value contributed in the didn't contribute, wrong direction but could have Intuitively these make sense Why change by 1? decrease decrease Any other way of doing it? 0 -> -1 1 -> 0

pick a model e.g. a hyperplane, a decision tree,... A model is defined by a collection of parameters What are the parameters for DT? Perceptron?

Model-based machine learning

Model-based machine learning

- 1. pick a model
 - e.g. a hyperplane, a decision tree,...
 - A model is defined by a collection of parameters

DT: the structure of the tree, which features each node splits on, the predictions at the leaves

perceptron: the weights and the b value

Model-based machine learning

- 1. pick a model
- e.g. a hyperplane, a decision tree,...

- A model is defined by a collection of parameters
- 2. pick a criterion to optimize (aka objective function)

What criteria do decision tree learning and perceptron learning optimizing?

Model-based machine learning

- pick a model
 - e.g. a hyperplane, a decision tree,...
 - A model is defined by a collection of parameters
- 2. pick a criterion to optimize (aka objective function)
- e.g. training error
- develop a learning algorithm
 - the algorithm should try and minimize the criteria
- sometimes in a heuristic way (i.e. non-optimally)
- sometimes exactly

Linear models in general

1. pick a model

omôdel

top model

These are the parameters we want to learn

pick a criterion to optimize (aka objective function)

Some notation: indicator function

$$1[x] = \begin{cases} 1 & \text{if } x = True \\ 0 & \text{if } x = False \end{cases}$$

Convenient notation for turning T/F answers into numbers/counts:

$$beers_to_bring_for_class = \sum_{age \in class} 1[age >= 21]$$

Some notation: dot-product

Sometimes it is convenient to use vector notation

We represent an example $f_1, f_2, ..., f_m$ as a single vector, x

- j subscript will indicate feature indexing, i.e., x
- \blacksquare i subscript will indicate examples indexing over a dataset, i.e., x_i or sometimes x_{ij}

Similarly, we can represent the weight vector $\mathbf{w}_1,\,\mathbf{w}_2,\,\dots,\,\mathbf{w}_m$ as a single vector, \mathbf{w}

The dot-product between two vectors a and b is defined as:

$$a \cdot b = \sum_{j=1}^{m} a_j b_j$$

Linear models

ı. pick a model

These are the parameters we want to learn

2. pick a criterion to optimize (aka objective function)

$$\sum_{i=1}^{n} 1 \left[y_i(w \cdot x_i + b) \le 0 \right]$$

What does this equation say?

0/1 loss function

 $\sum_{i=1}^{n} \mathbb{1} \left[y_i(w \cdot x_i + b) \le 0 \right]$

- distance from hyperplane

- whether or not the sign is prediction
- whether or not the prediction and label agree, true if *they don't*

total number of mistakes, aka 0/1 loss

Model-based machine learning

ı. pick a model

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

2. pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} 1 \left[y_i(w \cdot x_i + b) \le 0 \right]$$

3. develop a learning algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} 1 \left[y_i(w \cdot x_i + b) \le 0 \right]$$

Find w and b that minimize the 0/1 loss (i.e. training error)

Minimizing
$$0/1$$
 loss
$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \mathbb{1} \big[y_i(w \cdot x_i + b) \le 0 \big] \qquad \text{Find w and b that minimize the } 0/1 \text{ loss}$$
How do we do this?

How do we minimize a function?

Why is it hard for this function?

Minimizing 0/1 loss $\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \mathbb{I}[y_i(w \cdot x_i + b) \le 0]$ Find w and b that minimize the 0/1 loss

This turns out to be hard (in fact, NP-HARD ⊗)

Challenge:

- small changes in any w can have large changes in the loss (the change isn't continuous)
- there can be many, many local minima
- at any given point, we don't have much information to direct us towards any minima

Surrogate loss functions

For many applications, we really would like to minimize the $0/1\ \mbox{loss}$

A surrogate loss function is a loss function that provides an upper bound on the actual loss function (in this case, 0/1)

We'd like to identify convex surrogate loss functions to make them easier to minimize

Key to a loss function: how it scores the difference between the actual label y and the predicted label y'

Surrogate loss functions

0/1 loss: $l(y, y') = 1[yy' \le 0]$

Ideas? Some function that is a proxy for error, but is continuous and convex

Surrogate loss functions

0/1 loss:

$$l(y, y') = 1 [yy' \le 0]$$

Hinge:

 $l(y, y') = \max(0, 1 - yy')$

Exponential:

 $l(y, y') = \exp(-yy')$

Squared loss:

 $l(y, y') = (y - y')^2$

Why do these work? What do they penalize?

Surrogate loss functions 0/1 loss: $l(y,y') = 1[yy' \le 0]$ Hinge: $l(y,y') = \max(0,1-yy')$ Squared loss: $l(y,y') = (y-y')^2$ Exponential: $l(y,y') = \exp(-yy')$ Surrogate loss functions 0/1 loss: $l(y,y') = 1[yy' \le 0]$ Hinge: $l(y,y') = \exp(-yy')$ Surrogate loss functions 0/1 loss: $l(y,y') = 1[yy' \le 0]$ Hinge: $l(y,y') = \exp(-yy')$ Surrogate loss functions

Model-based machine learning

ı. pick a model

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b))$$

use a convex surrogate loss function

3. develop a learning algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b))$$

Find w and b that minimize the surrogate loss

Finding the minimum

You're blindfolded, but you can see out of the bottom of the blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

Finding the minimum

How do we do this for a function?

One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

One approach: gradient descent Partial derivatives give us the slope (i.e. direction to move) in that dimension Approach: pick a starting point (w) repeat: pick a dimension move a small amount in that dimension towards decreasing loss (using the derivative)

Gradient descent

- pick a starting point (w)
- repeat until loss doesn't decrease in any dimension:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_{j} = w_{j} - \eta \frac{d}{dw_{j}} loss(w)$$

learning rate (how much we want to move in the error direction, often this will change over time)

Some math

$$\frac{d}{dw_j}loss = \frac{d}{dw_j} \sum_{i=1}^n \exp(-y_i(w \cdot x_i + b))$$
$$= \sum_{i=1}^n \exp(-y_i(w \cdot x_i + b)) \frac{d}{dw_j} - y_i(w \cdot x_i + b)$$

Some math

$$-\frac{d}{dw_{j}}y_{i}(w \cdot x_{i} + b) = -\frac{d}{dw_{j}}y_{i}(\sum_{j=1}^{m} w_{j}x_{ij} + b)$$

$$= -\frac{d}{dw_{j}}y_{i}(w_{1}x_{i1} + w_{2}x_{i2} + \dots + w_{m}x_{im} + b)$$

$$= -\frac{d}{dw_{j}}y_{i}w_{1}x_{i1} + y_{i}w_{2}x_{i2} + \dots + y_{i}w_{m}x_{im} + y_{i}b)$$

$$= -y_{i}x_{ij}$$

Some math

$$\frac{d}{dw_j}loss = \frac{d}{dw_j} \sum_{i=1}^n \exp(-y_i(w \cdot x_i + b))$$

$$= \sum_{i=1}^n \exp(-y_i(w \cdot x_i + b)) \frac{d}{dw_j} - y_i(w \cdot x_i + b)$$

$$= \sum_{i=1}^n -y_i x_{ij} \exp(-y_i(w \cdot x_i + b))$$

Gradient descent

- pick a starting point (w)
- repeat until loss doesn't decrease in any dimension:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_j = w_j + \eta \sum_{i=1}^{n} y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

What is this doing?

Exponential update rule

$$w_j = w_j + \eta \sum_{i=1}^{n} y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

for each example x_i :

$$W_i = W_i + \eta y_i x_{ii} \exp(-y_i (w \cdot x_i + b))$$

Does this look familiar?

Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

for each training example ($f_1, f_2, ..., f_m$, label):

$$prediction = b + \sum_{j=1}^{m} w_j f_j$$

if prediction * label \leq 0: // they don't agree

for each w_i :

$$w_i = w_i + f_i^*$$
label

b = b + label

$$W_j = W_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

0

$$w_j = w_j + x_{ij}y_ic$$
 where $c = \eta \exp(-y_i(w \cdot x_i + b))$

