

Linear models

A linear model in n-dimensional space (i.e. n features) is define by $n+1$ weights:

In two dimensions, a line:

$$
0=w_{1} f_{1}+w_{2} f_{2}+b \quad(\text { where } \mathrm{b}=-\mathrm{a})
$$

In three dimensions, a plane:

$$
0=w_{1} f_{1}+w_{2} f_{2}+w_{3} f_{3}+b
$$

In m-dimensions, a hyperplane

$$
0=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{m}$, label):
prediction $=b+\sum_{j=1}^{m} w_{j} f_{j}$
if prediction * label ≤ 0 : // they don't agree for each w_{i} :
$w_{i}=w_{i}+f_{i}{ }^{*}$ label
$b=b+$ label

Which line will it find?

Only guaranteed to find some line that separates the data

Linear models

Perceptron algorithm is one example of a linear classifier

Many, many other algorithms learn a line (i.e. a setting of a linear combination of weights)

Goals:

Explore a number of linear training algorithms Understand why these algorithms work

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{m}$, label):
prediction $=b+\sum_{j=1}^{m} w_{j} f_{j}$
if prediction * label ≤ 0 : // they don't agree for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label

Model-based machine learning

A model is defined by a collection of parameters

What are the parameters for DT? Perceptron?
Model-based machine learning

1. pick a model
e.g. a hyperplane, a decision tree,...
A model is defined by a collection of parameters
DT: the structure of the tree, which features each node
splits on, the predictions at the leaves
perceptron: the weights and the b value

Some notation: indicator function
$1[x]=\left\{\begin{array}{cc\|}1 & \text { if } x=\text { True } \\ 0 & \text { if } x=\text { False }\end{array}\right\}$
Convenient notation for turning T / F answers into numbers/counts:
beers_to_bring_for_class $=\sum_{\text {agetcass }}^{\sum_{-}} 1[$ age $>=21]$

Linear models
1. pick a model
$0=b-\sum_{j=1}^{n} w_{i j} f_{j}$
These are the parameters we want to learn
2. pick a criterion to optimize (aka objective function)
$\sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right]$
What does this equation say?

Some notation: dot-product

Sometimes it is convenient to use vector notation

We represent an example $f_{1}, f_{2}, \ldots, f_{m}$ as a single vector, x

- j subscript will indicate feature indexing, i.e., x_{j}
- i subscript will indicate examples indexing over a dataset, i.e., x_{i} or sometimes $x_{i j}$

Similarly, we can represent the weight vector $w_{1}, w_{2}, \ldots, w_{m}$ as a single vector,
w

The dot-product between two vectors a and b is defined as:

$$
a \cdot b=\sum_{j=1}^{m} a_{j} b_{j}
$$

(

Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right]
$$

3. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right]
$$

Find w and b that minimize the $0 / 1$ loss (i.e. training error)

Minimizing 0/1 loss

$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right] \quad \begin{aligned} & \text { Find } w \text { and } b \text { that } \\ & \text { minimize the } 0 / 1 \text { loss }\end{aligned}$

How do we do this?
How do we minimize a function? Why is it hard for this function?

Minimizing 0/1 loss
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} 1\left[y_{i}\left(w \cdot x_{i}+b\right) \leq 0\right]$ Find w and b that minimize the 0/1 loss This turns out to be hard (in fact, NP-HARD $)^{2}$) Challenge: - small changes in any w can have large changes in the loss (the change isn't continuous) - there can be many, many local minima - at any given point, we don't have much information to direct us towards any minima

Surrogate loss functions

For many applications, we really would like to minimize the 0/1 loss

A surrogate loss function is a loss function that provides an upper bound on the actual loss function (in this case, 0/1)

We'd like to identify convex surrogate loss functions to make them easier to minimize

Key to a loss function: how it scores the difference between the actual label \boldsymbol{y} and the predicted label \boldsymbol{y}^{\prime}

Surrogate loss functions

$0 / 1$ loss: $\quad l\left(y, y^{\prime}\right)=1\left[y y^{\prime} \leq 0\right]$

Ideas?
Some function that is a proxy for error, but is continuous and convex

| Surrogate loss functions |
| :---: | :---: |
| $0 / 1$ loss: $\quad l\left(y, y^{\prime}\right)=1\left[y y^{\prime} \leq 0\right]$ |
| Hinge: $\quad l\left(y, y^{\prime}\right)=\max \left(0,1-y y^{\prime}\right)$ |
| Exponential: $\quad l\left(y, y^{\prime}\right)=\exp \left(-y y^{\prime}\right)$ |
| Squared loss: $\quad l\left(y, y^{\prime}\right)=\left(y-y^{\prime}\right)^{2}$ |
| Why do these work? What do they penalize? |

Model-based machine learning

1. pick a model

$$
0=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

2. pick a criteria to optimize (aka objective function)

$$
\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \quad \begin{aligned}
& \text { use a convex surrogate } \\
& \text { loss function }
\end{aligned}
$$

3. develop a learning algorithm

$$
\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

Find w and b that minimize the surrogate loss

Finding the minimum

You're blindfolded, but you can see out of the bottom of the blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

Finding the minimum

How do we do this for a function?

One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

Approach:

\square pick a starting point (w)
\square repeat:

- pick a dimension
- move a small amount in that dimension towards decreasing loss (using the derivative)

One approach: gradient descent

Partial derivatives give us the
slope (i.e. direction to move) in
that dimension

Approach:

\square pick a starting point (w)
\square repeat:

- pick a dimension

- move a small amount in that
dimension towards decreasing loss (using the derivative)

Gradient descent
pick a starting point (w) repeat until loss doesn't decrease in any dimension: - pick a dimension - move a small amount in that dimension towards decreasing loss (using the derivative) $w_{j}=w_{j}-\frac{d}{d w_{j}} \operatorname{loss}(w)$ Why negative?

Gradient descent
ם pick a starting point (w) \square repeat until loss doesn't decrease in any dimension: ■ pick a dimension ■ move a small amount in that dimension towards decreasing loss (using the derivative)
$w_{j}=w_{j}-\eta \frac{d}{d w_{j}} \operatorname{loss}(w)$
What does this do?

Some math

Some math

$$
\begin{aligned}
\frac{d}{d w_{j}} \text { loss } & =\frac{d}{d w_{j}} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \\
& =\sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right) \frac{d}{d w_{j}}-y_{i}\left(w \cdot x_{i}+b\right) \\
& =\sum_{i=1}^{n}-y_{i} x_{j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
\end{aligned}
$$

Perceptron learning algorithm!
repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{m}$, label):
prediction $=b+\sum_{j=1}^{m} w_{j} f_{j}$
if prediction * label ≤ 0 : // they don't agree
for each w_{i} :
$w_{i}=w_{i}+f_{i}$ *label
$b=b+$ label
$w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
or
$w_{j}=w_{j}+x_{i j} y_{i} c \quad$ where $c=\eta \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$

Exponential update rule

$w_{j}=w_{j}+\eta \sum_{i=1}^{n} y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
for each example x_{i} :
$w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$

Does this look familiar?

One concern
We're calculating this on the training set
$\operatorname{argmin}_{w, b} \sum_{i=1}^{n} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)$
We still need to be careful about
The min w,b on the training set is
generally NOT the min for the test set
How did we deal with this for the perceptron algorithm?

We're calculating this on the training set
We still need to be careful about overfitting!

Perceptron learning algorithm!

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{m}$, label):

$$
\text { prediction }=b+\sum_{j=1}^{m} w_{j} f_{j}
$$

if prodiction * labol ≤ 0. //they don't-agree
for each w_{i} : Note: for gradient descent, we always update $w_{i}=w_{i}+f_{i}$ *label $b=b+$ label

$$
w_{j}=w_{j}+\eta y_{i} x_{i j} \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

or

$$
w_{j}=w_{j}+x_{i j} y_{i} c \quad \text { where } c=\eta \exp \left(-y_{i}\left(w \cdot x_{i}+b\right)\right)
$$

Summary
Model-based machine learning:
define a model, objective function (i.e. loss function),
minimization algorithm
Gradient descent minimization algorithm
require that our loss function is convex
make small updates towards lower losses
Perceptron learning algorithm:
gradient descent
exponential loss function (modulo a learning rate)

