

Admin

Assignment 1 grading

Assignment 2 Due Sunday at midnight

Meet with colloquium speaker today, 2:15-
2:45pm in Edmunds 129

Colloquium talk

Detecting Bugs and Explaining Predictions of Machine Learning Models
Machine learning is at the forefront of many recent advances in science and technology, enabled in part by the sophisticated models and algorithms that have been recently introduced. However, as a consequence of this complexity, machine earning essentially acts as a black-box as far as users are concerned, making it incredibly difficult to understand, predict, or detect bugs in their behavior. Fo challenging since held-out accuracy metrics significantly overestimate real-world performance. In this talk, I will describe our research on approaches that explain the predictions of any classifier in an interpretable and faithful manner, and automated techniques to detect bugs that can occur naturally when a model is deployed. In particular, these methods describe the relationship between the components of the put instance and the classifier's prediction. I will cover various ways in which we ummarize this relationship: as linear weights, as precise rules, and as counterexamples, and present experiments to contrast them and evaluate their utility in understanding, and debugging, black-box machine learning algorithms, on tabular, image, text, and graph completion applications.

Defining a line

Any pair of values $\left(w_{1}, w_{2}\right)$ defines a line through the origin:

$$
\begin{gathered}
0=w_{1} f_{1}+w_{2} f_{2} \\
0=1 f_{1}+2 f_{2} \\
w=(1,2)
\end{gathered}
$$

We can also view it as the line perpendicular to the weight vector

Linear models

A linear model in n-dimensional space (i.e. n features) is define by $n+1$ weights:

In two dimensions, a line:

$$
\left.0=w_{1} f_{1}+w_{2} f_{2}+b \quad \text { (where } \mathrm{b}=-\mathrm{a}\right)
$$

In three dimensions, a plane:

$$
0=w_{1} f_{1}+w_{2} f_{2}+w_{3} f_{3}+b
$$

In n-dimensions, a hyperplane

$$
0=b+\sum_{i=1}^{n} w_{i} f_{i}
$$

A closer look at why we got it wrong

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label): check if it's correct based on the current model
if not correct, update all the weights:
if label positive and feature positive: increase weight (increase weight = predict more positive) else if label positive and feature negative:
decrease weight (decrease weight = predict more positive)
else if label negative and feature positive:
decrease weight (decrease weight = predict more negative)
else if label negative and feature negative:
increase weight (increase weight $=$ predict more negative)

A trick...	
if label positive and feature positive: increase weight (increase weight = predict more positive)	label $* \boldsymbol{f}_{\boldsymbol{i}}$
	$1^{* 1} 1=1$
else if label positive and feature negative: decrease weight (decrease weight = predict more positive)	1*-1=-1
else if label negative and feature positive: decrease weight (decrease weight = predict more negative)	-1*1=-1
else if label negative and negative weight: increase weight (increase weight = predict more negative)	-1*-1=1

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
check if it's correct based on the current model
if not correct, update all the weights:
for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label
How do we check if it's correct?

A trick...	
if label positive and feature positive: increase weight (increase weight = predict more positive) else if label positive and feature negative: decrease weight (decrease weight = predict more positive) else if label negative and feature positive: decrease weight (decrease weight = predict more negative) else if label negative and negative weight: increase weight (increase weight = predict more negative)	$\begin{aligned} & \text { label } * \boldsymbol{f}_{\boldsymbol{i}} \\ & \hline 1 * 1=1 \\ & 1 *-1=-1 \\ &-1 * 1=-1 \\ &-1 *-=1 \end{aligned}$

Perceptron learning algorithm

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label): prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
if prediction * label ≤ 0 : // they don't agree
for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label

Perceptron learning algorithm

repeat until convergence (or for some $\#$ of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
if prediction * label ≤ 0 : // they don't agree
for each w_{i} :
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label

Would this work for non-binary features, i.e. real-valued?

Your turn \bullet		
repeat until convergence (or for some \# of iterations): for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label): prediction $=\sum_{i-1}^{n} w_{i} f_{i}$ if prediction * label ≤ 0 : // they don't agree for each wi: $w_{i}=w_{i}+f_{i}^{*} \mid \text { abel }$ - Repeat until convergence - Keep track of w_{1}, w_{2} as they change - Redraw the line after each step $w=(1,0)$		

Convergence
repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):
prediction $=b+\sum_{i=1}^{n} w_{i} f_{i}$
if prediction * label $\leq 0: / /$ they don't agree
for each $w_{i}:$
$w_{i}=w_{i}+f_{i}^{*}$ label
$b=b+$ label
Why do we also have the "some \# iterations" check?

Ordering

repeat until convergence (or for some \# of iterations):
for each training example ($f_{1}, f_{2}, \ldots, f_{n}$, label):

$$
\text { prediction }=b+\sum_{i=1}^{n} w_{i} f_{i}
$$

if prediction * label ≤ 0 : // they don't agree for each w_{i} :

$$
w_{i}=w_{i}+f_{i}^{*} \text { label }
$$

$b=b+$ label

What order should we traverse the examples? Does it matter?

Order matters: a bad order

Solution?

Voted perceptron learning
Training
every time a mistake is made on an example:
store the weights (i.e. before changing for current example)
store the number of examples that set of weights got correct
Classify
calculate the prediction from ALL saved weights
multiply each prediction by the number it got correct (i.e., a
weighted vote) and take the sum over all predictions
said another way: pick whichever prediction has the most votes

Voted perceptron learning

Works much better in practice

Avoids overfitting, though it can still happen

Avoids big changes in the result by examples examined at the end of training

Voted perceptron learning

Training

every time a mistake is made on an example:
store the weights (i.e. before changing for current example)
store the number of examples that set of weights got correct

Classify
calculate the prediction from ALL saved weights
multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
said another way: pick whichever prediction has the most votes

Any issues/concerns?

Voted perceptron learning

Training
every time a mistake is made on an example:
store the weights (i.e. before changing for current example) store the number of examples that set of weights got correct

Classify
calculate the prediction from ALL saved weights
multiply each prediction by the number it got correct (i.e a weighted vote) and take the sum over all predictions
said another way: pick whichever prediction has the most votes

1. Can require a lot of storage
2. Classifying becomes very, very expensive

Average perceptron

$\frac{\text { Vote }}{3}$	$w_{1}^{1}, w_{2}^{1}, \ldots, w_{n}^{1}, b^{1}$	
1	$w_{1}^{2}, w_{2}^{2}, \ldots, w_{n}^{2}, b^{2}$	$\bar{w}_{i}=\frac{3 w_{i}^{1}+1 w_{i}^{2}+5 w_{i}^{3}+1 w_{i}^{4}}{10}$
5	$w_{1}^{3}, w_{2}^{3}, \ldots, w_{n}^{3}, b^{3}$	The final weights are the weighted average of the previous weights
1	$w_{1}^{4}, w_{2}^{4}, \ldots, w_{n}^{4}, b^{4}$	How does this help us?

Our nervous system: the computer science view

w is the strength of signal sent between A and B .

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

