

	•
Δd	min
AG	

Assignment 7

Assignment 8

Deep learning

WIKIPEDIA

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data by using a deep graph with multiple processing layers, composed of multiple linear and non-linear transformations.

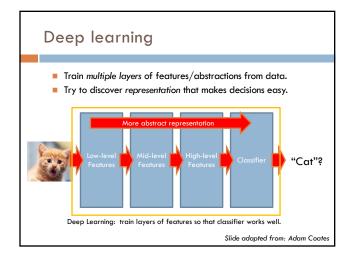
Deep learning is part of a broader family of machine learning methods based on learning representations of data.

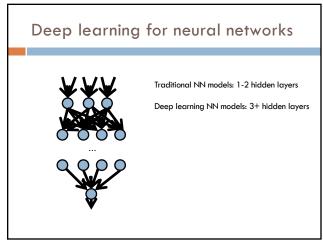
Deep learning

Key: learning better features that abstract from the "raw" data

Using learned feature representations based on large amounts of data, generally unsupervised

Using classifiers with multiple layers of learning



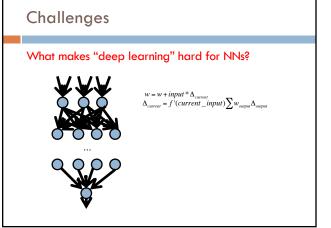


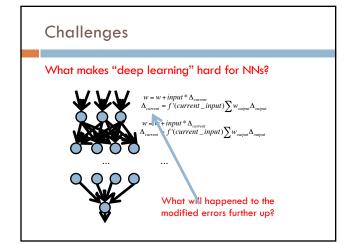
Importance of features

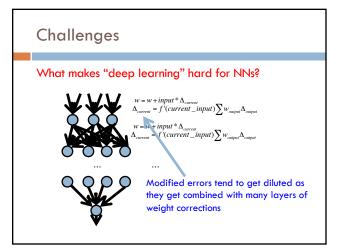
Once you have the right features, the algorithm you pick is relatively unimportant

Normal process = hand-crafted features

Deep learning: find algorithms to automatically discover features from the data







Deep learning

Growing field

Driven by:

- Increase in data availability
- $\hfill\square$ Increase in computational power
- Parallelizability of many of the algorithms

Involves more than just neural networks (though, they're a very popular model)

word2vec

How many people have heard of it?

What is it?

Word representations

Wine data uses word occurrences as a feature

What does this miss?

Word representations

Wine data uses word occurrences as a feature

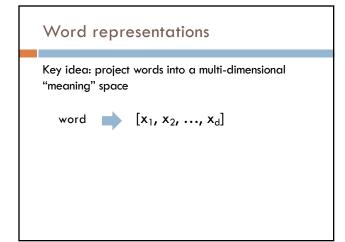
What does this miss?

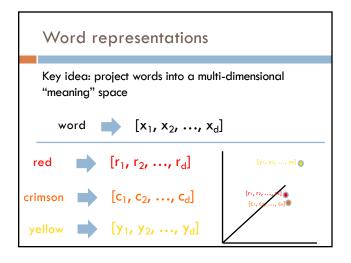
"The wine had a dark red color"	Zinfandel

"The wine was a deep crimson color" label?

"The wine was a deep yellow color" label?

Would like to recognize that words have similar meaning even though they aren't lexically the same

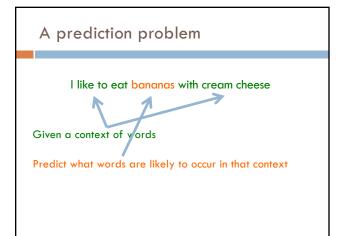




Word representations Key idea: project words into a multi-dimensional "meaning" space word $(x_1, x_2, ..., x_d)$ The idea of word representations is not new: • Co-occurrence matrices

• Latent Semantic Analysis (LSA)

New idea: learn word representation using a taskdriven approach

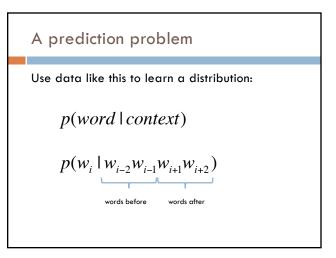


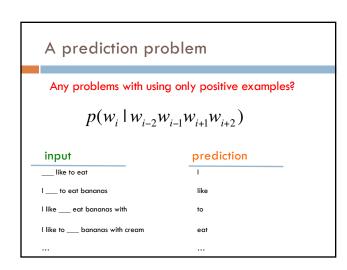
A prediction problem

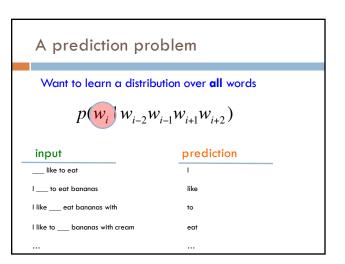
Given text, can generate lots of positive examples:

I like to eat bananas with cream cheese

input	prediction
like to eat	Ι
I to eat bananas	like
l like eat bananas with	to
l like to bananas with cream	eat



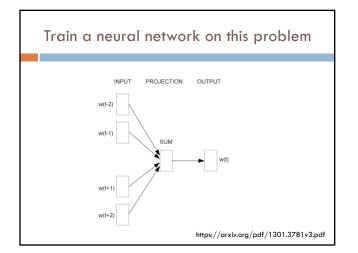


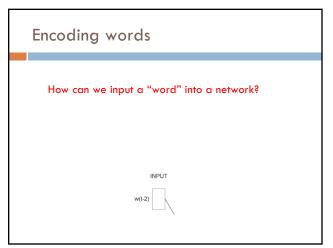


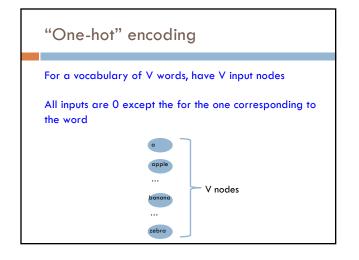
...

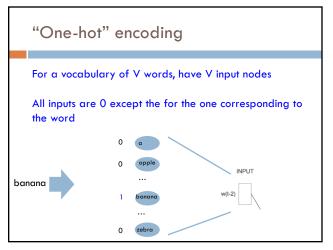
...

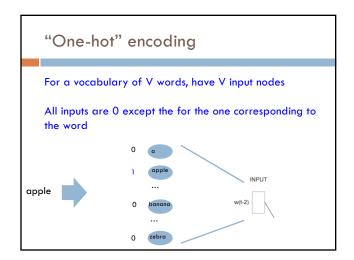
A prediction pro	blem
Use random words to ge	enerate negative examples
l like to eat banar	nas with cream cheese
input	prediction (negative)
like to eat	car
I to eat bananas	snoopy
l like eat bananas with	run
I like to bananas with cream	sloth

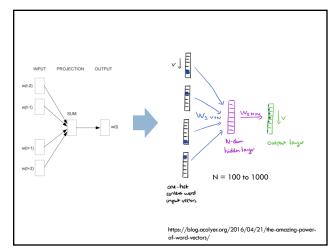


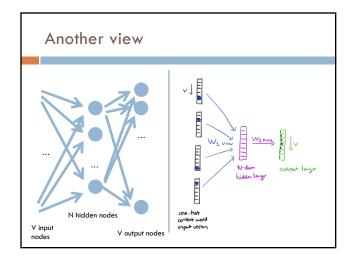


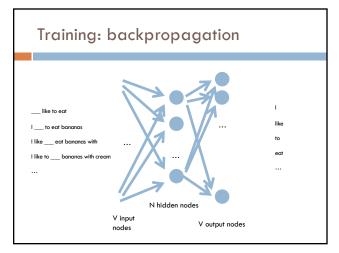


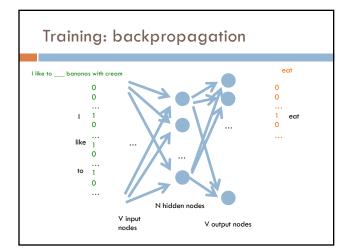


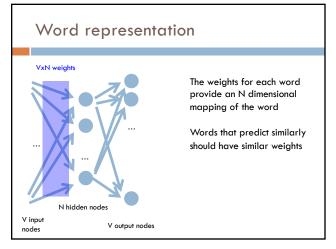












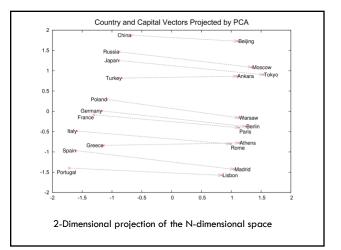
esults				
ctor(word1) — v	ector(wo	rd2) = ve	ector(wor	·d3) - X
word1 is to v	word2 as v	word3 is to	X	
word1 is to v		word3 is to Pair 1		rd Pair 2
				rd Pair 2 Norway
Type of relationship	Word	Pair 1	Wo	
Type of relationship Common capital city	Word	Pair 1 Greece	Wo	Norway
Type of relationship Common capital city All capital cities	Word Athens Astana	Pair 1 Greece Kazakhstan	Wo Oslo Harare	Norway Zimbabwe

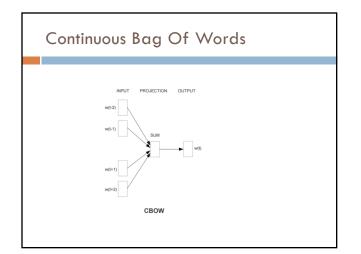
Results

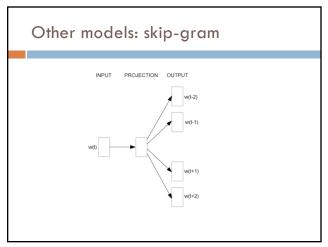
vector(word1) - vector(word2) = vector(word3) - X word1 is to word2 as word3 is to X

Type of relationship	Word Pair 1		Word Pair 2	
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

Results			
ector(word1)	– vector(word2)	= vector(word3) - X
word I is	to word2 as word	3 IS TO X	
	Newspaper	'S	
New York	New York Times	Baltimore	Baltimore Sun
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer
	NHL Team	15	
Boston	Boston Bruins	Montreal	Montreal Canadiens
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators
	NBA Team	15	
Detroit	Detroit Pistons	Toronto	Toronto Raptors
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies
	Airlines		
Austria	Austrian Airlines	Spain	Spainair
Belgium	Brussels Airlines	Greece	Aegean Airlines
	Company exec	utives	-
Steve Ballmer	Microsoft	Larry Page	Google







word2vec

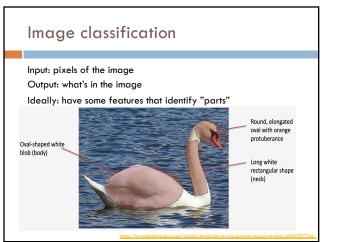
A model for learning word representations from large amounts of data

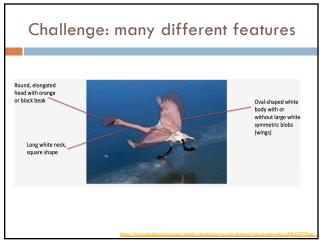
Has become a popular pre-processing step for learning a more robust feature representation

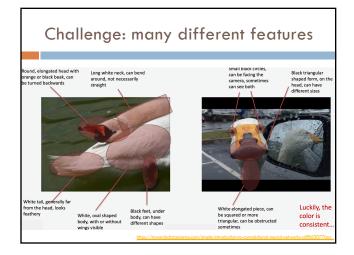
Models like word2vec have also been incorporated into other learning approaches (e.g. translation tasks)

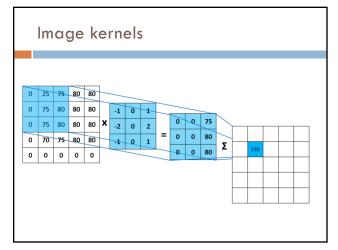
word2vec resources

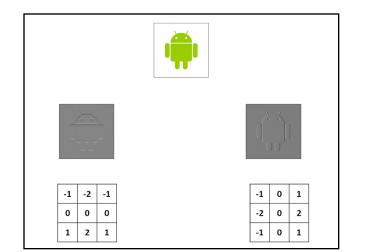
- https://blog.acolyer.org/2016/04/21/theamazing-power-of-word-vectors/
- https://code.google.com/archive/p/word2vec/
- □ https://deeplearning4j.org/word2vec
- https://arxiv.org/pdf/1301.3781v3.pdf

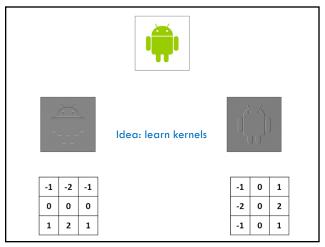


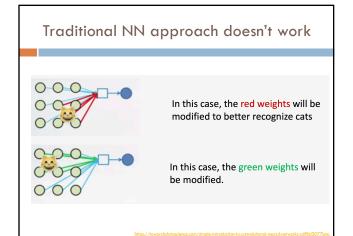












Traditional NN approach doesn't work

The information of image is the pixel

If we're dealing with a 512x512 RGB image, we have $512x512x3=786,\!432$ inputs

How many weights will we have with 5 hidden nodes?

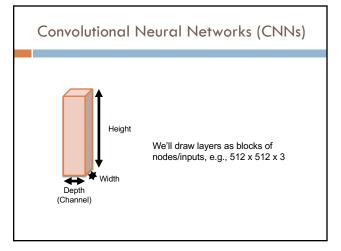
For example, a 512x512 RGB image has 512x512x3 = 786,432 and therefore 786,432 weights in the next layer **per neuron**

Traditional NN approach doesn't work

The information of image is the pixel

If we're dealing with a 512x512 RGB image, we have 512x512x3 = 786,432 inputs

786,432 weights per neuron = ~4M weights!

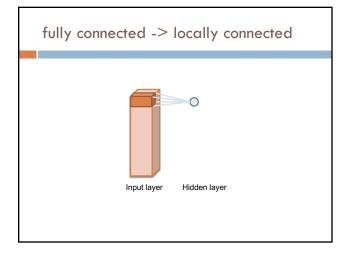


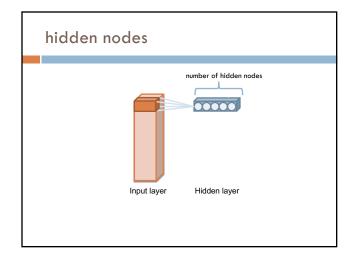
Locally connected

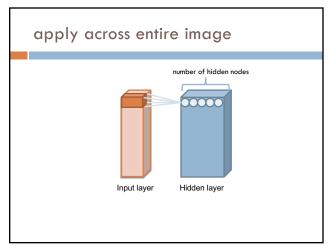
image features are usually local

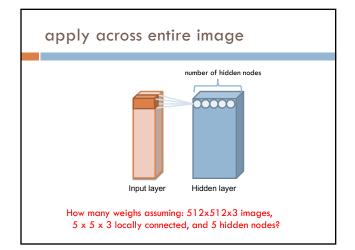
reduce the fully-connected network to locallyconnected network.

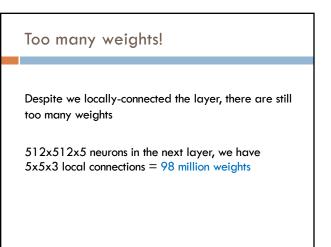
For example, if we set window size 5, we only need 5x5x3 = 75

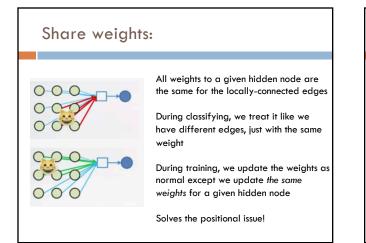


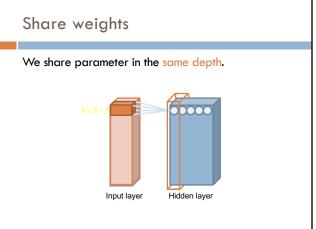












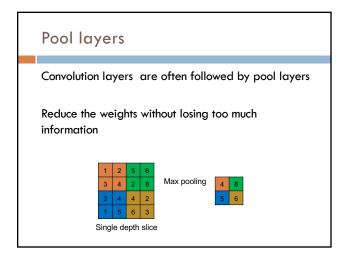
Parameter sharing

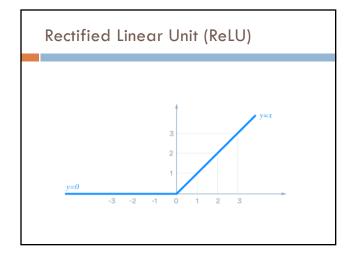
We share parameter in the same depth

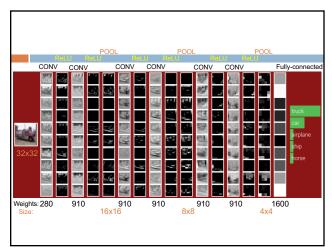
Now we only have 75x5=375 weights

We call these layers "convolution layers".

What is learned can be considered as the convolution filters (like a kernel)







Another example

http://scs.ryerson.ca/~aharley/vis/conv/