

CS158 – Fall 2019

Admin

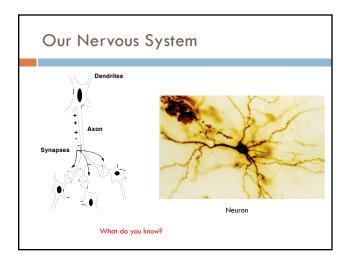
Assignment 7A solutions available on sakai in resources

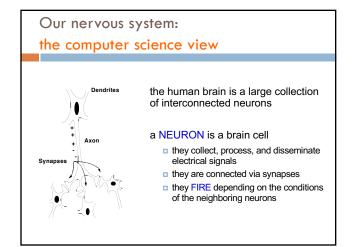
Assignment 7B

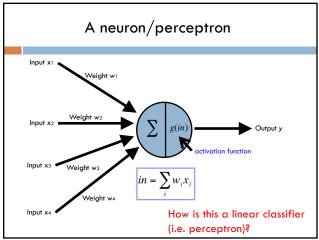
Assignment grading

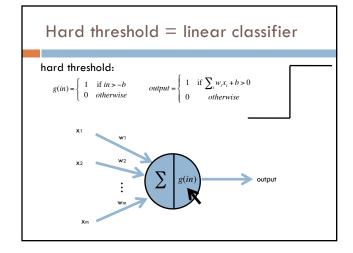
Perceptron learning algorithm repeat until convergence (or for some # of iterations): for each training example $(f_1, f_2, ..., f_m$ label): $prediction = b + \sum_{i=1}^{n} w_i f_i$ if prediction * label ≤ 0 : // they don't agree for each w_i: $w_i = w_i + f_i$ *label b = b + label

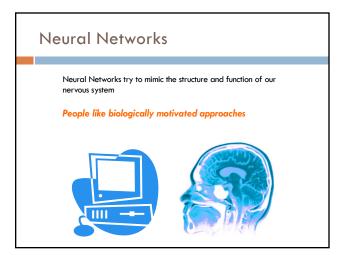
Why is it called the "perceptron" learning algorithm if what it learns is a line? Why not "line learning" algorithm?

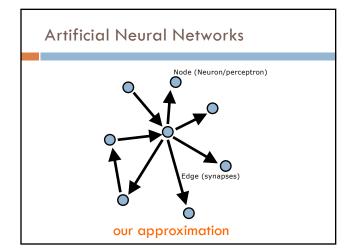


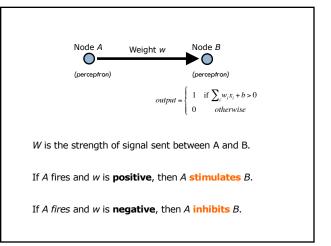


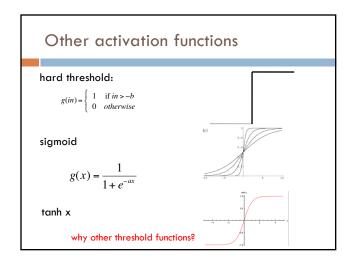


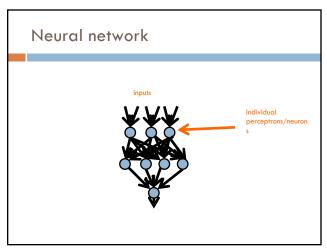


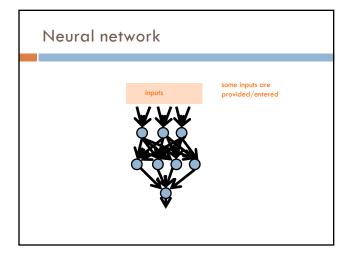


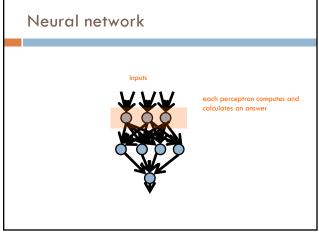


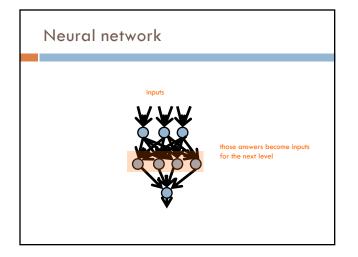


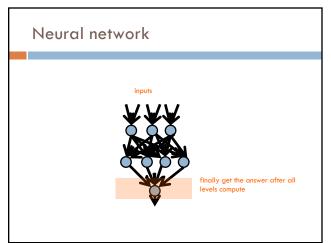


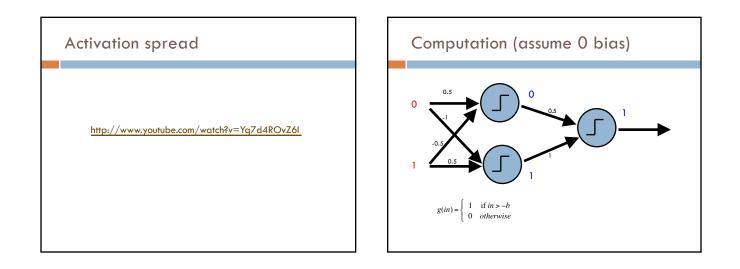


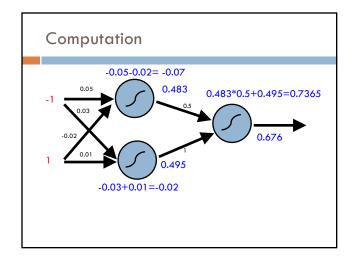


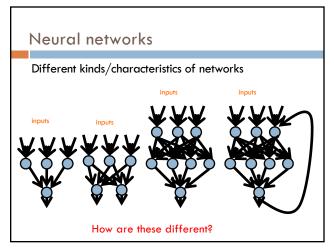


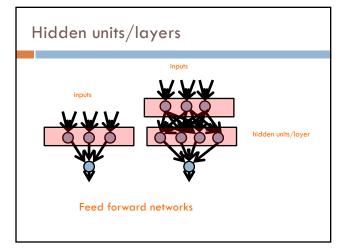


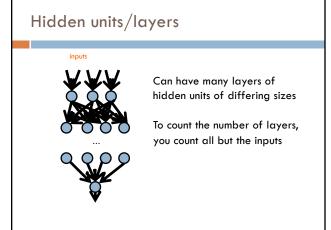


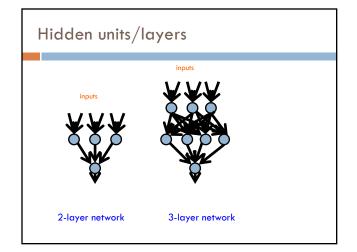


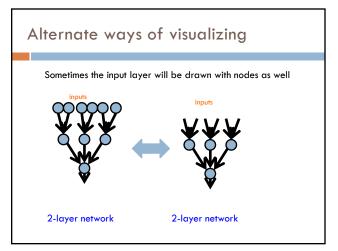


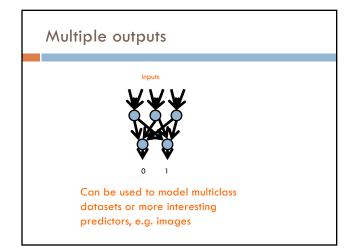


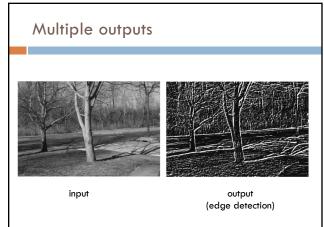


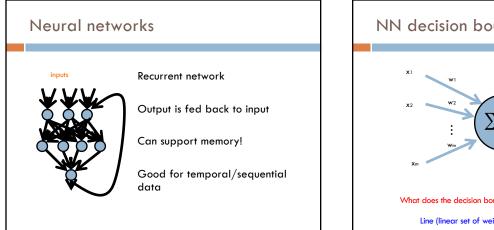


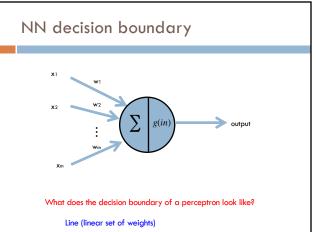


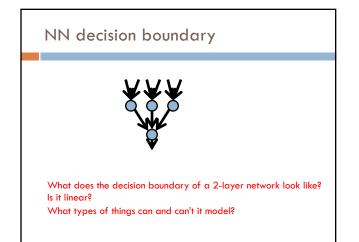


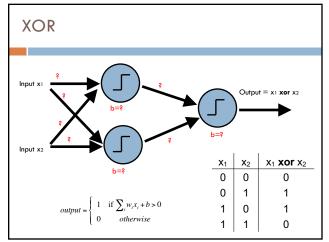


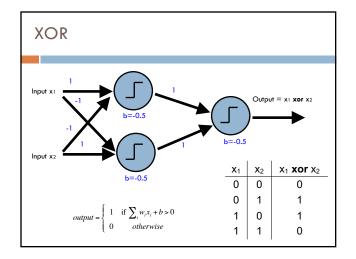


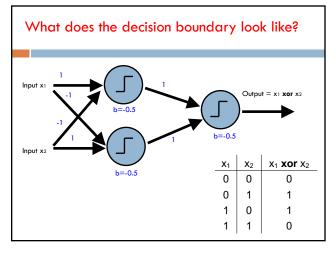


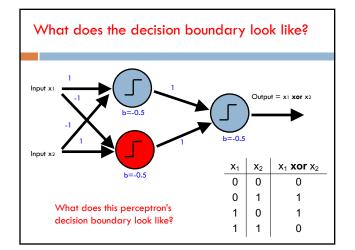


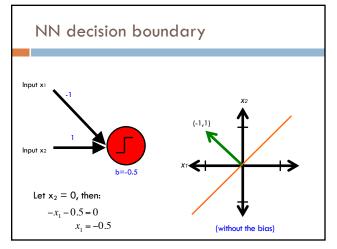


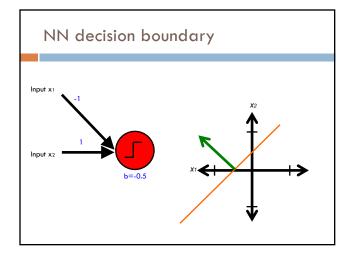


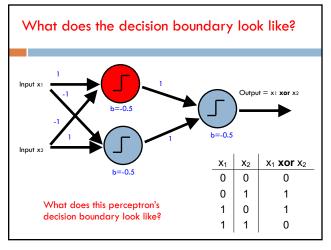


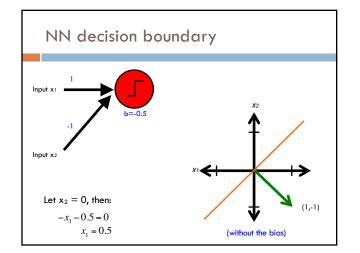


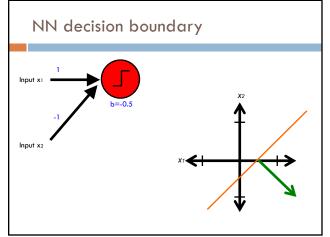


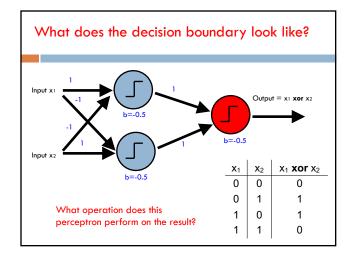


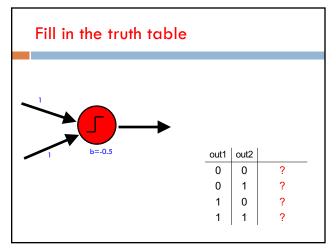


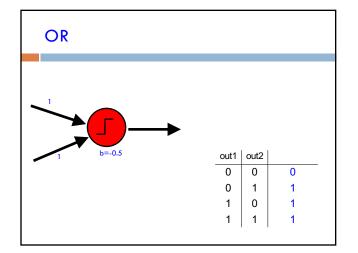


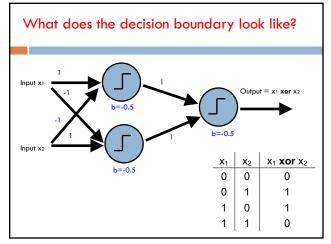


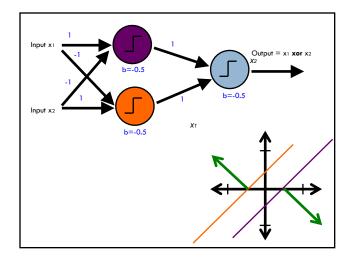


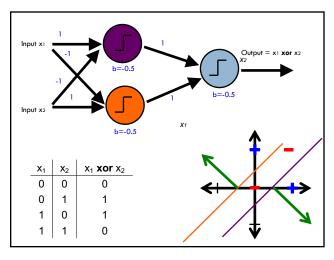


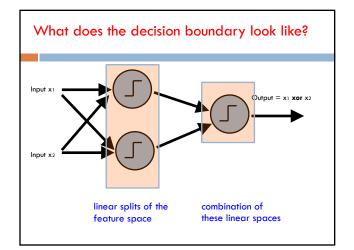


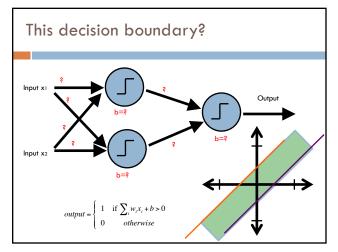


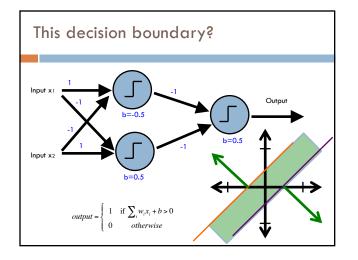


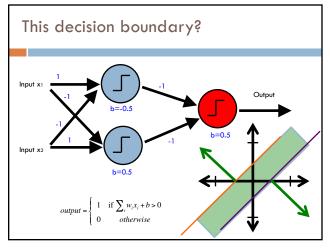


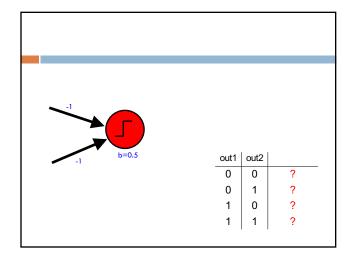


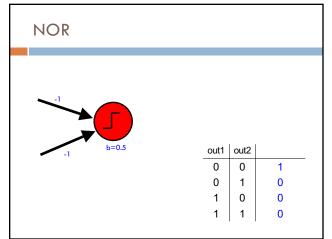


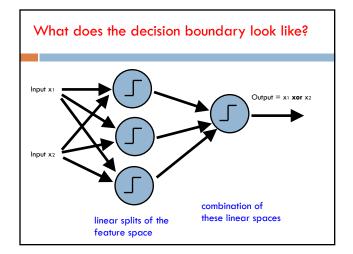


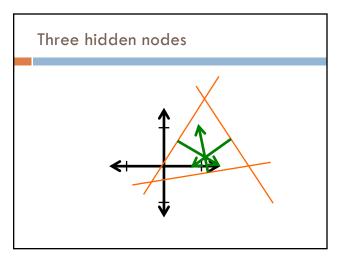










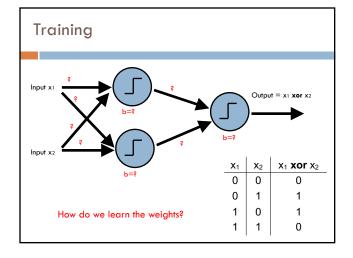


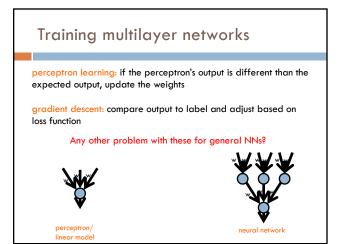
NN decision boundaries

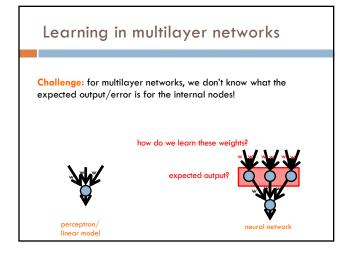
Theorem 9 (Two-Layer Networks are Universal Function Approximators). Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximate F arbitrarily well. Namely, for all x in the domain of F, $|F(x) - \hat{F}(x)| < \epsilon$.

'Or, in colloquial terms "two-layer networks can approximate any function."

NN decision boundaries For DT, as the tree gets larger, the model gets more complex The same is true for neural networks: more hidden nodes = more complexity Adding more layers adds even more complexity (and much more quickly) Good rule of thumb: number of 2-layer hidden nodes ≤ number of dimensions



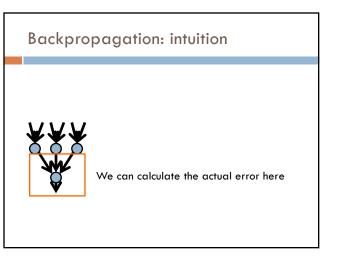


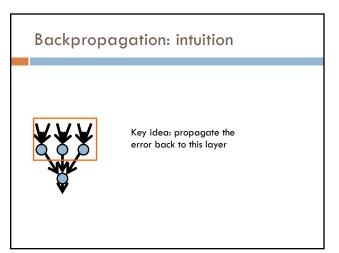


Backpropagation: intuition

Gradient descent method for learning weights by optimizing a loss function

- 1. calculate output of all nodes
- 2. calculate the weights for the output layer based on the error
- 3. "backpropagate" errors through hidden layers



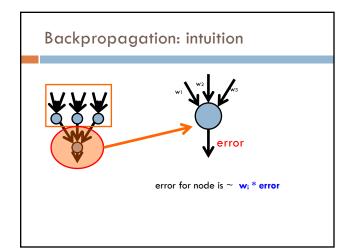


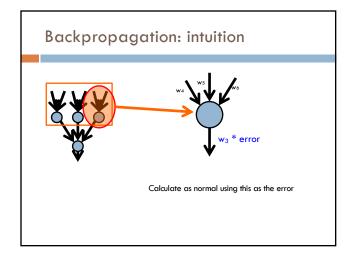
Backpropagation: intuition

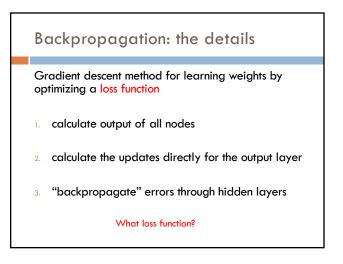
"backpropagate" the error:

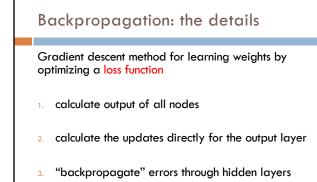
Assume all of these nodes were responsible for some of the error

How can we figure out how much they were responsible for?









 $loss = \sum_{x} \frac{1}{2} (y - \hat{y})^2$ squared error