REGULARIZATION

David Kauchak CS 158 – Fall 2019

Admin

Assignment 3 back

Assignment 5

Course feedback

Schedule

Midterm next week, due Friday (more on this in 1 min)

Assignment 6 due Friday before fall break (~ 2 weeks from now)

Focus on studying for the midterm, but at least take a look at this next week

Midterm

Download when you're ready to take it (available by end of day Monday)

2 hours to complete

Must hand-in (or e-mail in) by 11:59pm Friday Oct. 11

Can use: class notes, your notes, the book, your assignments and Wikipedia.

You may **not** use: your neighbor, anything else on the web, etc.

What can be covered

Anything we've talked about in class

Anything in the reading (these are not necessarily the same things)

Anything we've covered in the assignments

Midterm topics

Machine learning basics

- different types of learning problems
 - feature-based machine learning
 - data assumptions/data generating distribution

Classification problem setup

Proper experimentation

- train/dev/test
- evaluation/accuracy/training error
- optimizing hyperparameters

Midterm topics Learning algorithms Decision trees K-NN Perceptron Gradient descent Algorithm properties rational/why it works classifying hyperparameters avoiding overfitting algorithm variants/improvements

Midterm topics

Geometric view of data

- distances between examples
- decision boundaries

Features

- example features
- removing erroneous features/picking good features
- challenges with high-dimensional data
- feature normalization

Other pre-processing

outlier detection

Midterm topics

Comparing algorithms

- n-fold cross validation
- leave one out validation
- bootstrap resampling
- t-test

imbalanced data

- evaluation
- precision/recall, F1, AUC
- subsampling
- oversampling
- weighted binary classifiers

Midterm topics

Multiclass classification

- Modifying existing approaches
 - Using binary classifier
- OVA
- AVA
- Tree-based
- micro- vs. macro-averaging

Ranking

- using binary classifier
- using weighted binary classifier

Midterm topics

Gradient descent

- 0/1 loss
- Surrogate loss functions
- Convexity
- minimization algorithm
- regularization
- different regularizers
- p-norms

Misc

- good coding habits
- JavaDoc

Midterm general advice

2 hours goes by fast!

- Don't plan on looking everything up Lookup equations, algorithms, random details
- Make sure you understand the key concepts
- Don't spend too much time on any one question
- Skip questions you're stuck on and come back to them
- Watch the time as you go

Be careful on the T/F questions

For written questions

- think before you write
- make your argument/analysis clear and concise

How many have you heard of?

(Ordinary) Least squares

Ridge regression

Lasso regression

Elastic regression

Logistic regression

Model-based machine learning

1. pick a model

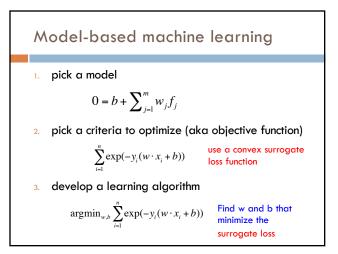
$$0 = b + \sum_{j=1}^{m} w_j f_j$$

2. pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} \mathbb{1} \left[y_i(w \cdot x_i + b) \le 0 \right]$$

3. develop a learning algorithm

 $\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \mathbb{1} \Big[y_i(w \cdot x_i + b) \le 0 \Big] \quad \begin{array}{l} \text{Find w and b that} \\ \text{minimize the 0/1 loss} \end{array}$



Surrogate loss functions	
0/1 loss:	$l(y,y') = 1[yy' \le 0]$
Hinge:	$l(y, y') = \max(0, 1 - yy')$
Exponential:	$l(y, y') = \exp(-yy')$
Squared loss:	$l(y, y') = (y - y')^2$

Finding the minimum

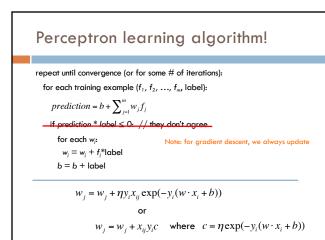
You're blindfolded, but you can see out of the bottom of the blindfold to the ground right by your feet. I drop you off somewhere and tell you that you're in a convex shaped valley and escape is at the bottom/minimum. How do you get out?

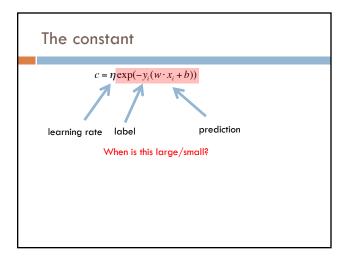
Gradient descent pick a starting point (w) repeat until loss doesn't decrease in any dimension:

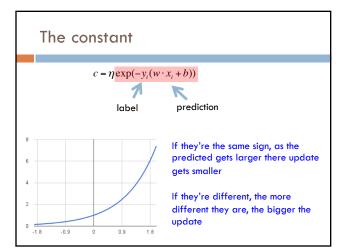
pick a dimension

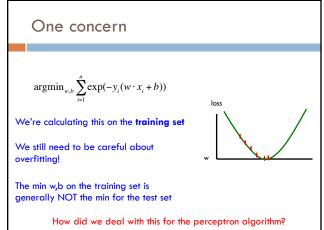
 move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_j = w_j - \eta \frac{d}{dw_j} loss(w)$$









Overfitting revisited: regularization

A regularizer is an additional criterion to the loss function to make sure that we don't overfit

It's called a regularizer since it tries to keep the parameters more normal/regular

It is a bias on the model that forces the learning to prefer certain types of weights over others

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy') + \lambda \ regularizer(w,b)$$

Regularizers

$$0 = b + \sum_{j=1}^{n} w_j f_j$$

Should we allow all possible weights?

Any preferences?

What makes for a "simpler" model for a linear model?

Regularizers

$$0 = b + \sum_{j=1}^{n} w_j f_j$$

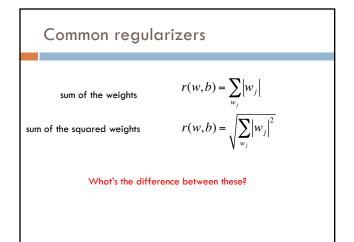
Generally, we don't want huge weights

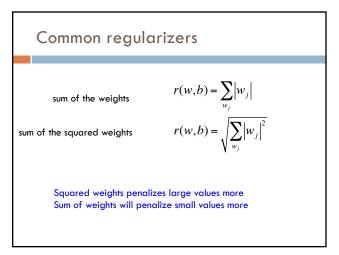
If weights are large, a small change in a feature can result in a large change in the prediction

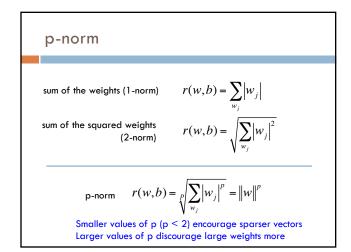
Also gives too much weight to any one feature

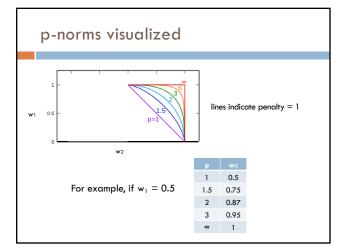
Might also prefer weights of 0 for features that aren't useful

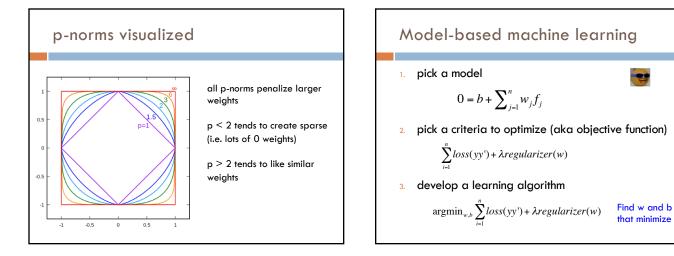
Regularizers $0 = b + \sum_{j=1}^{n} w_j f_j$ How do we encourage small weights? or penalize large weights? $\operatorname{argmin}_{w,b} \sum_{i=1}^{n} loss(yy^i) + \lambda \operatorname{regularizer}(w,b)$



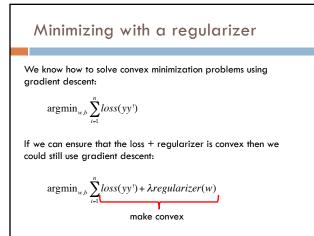


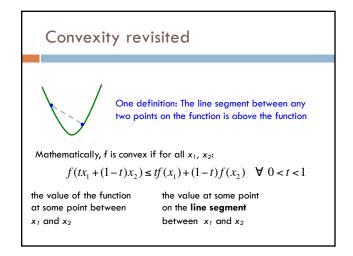






.....





Adding convex functions

Claim: If f and g are convex functions then so is the function z=f+g

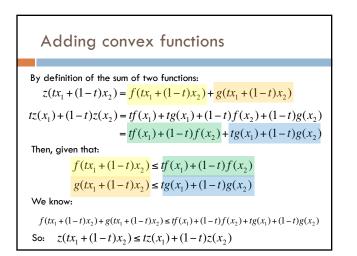
Prove:

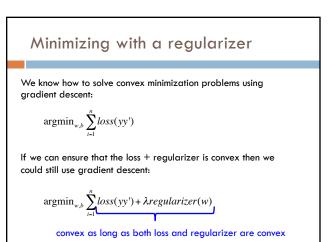
$$z(tx_1 + (1-t)x_2) \le tz(x_1) + (1-t)z(x_2) \quad \forall \ 0 < t < 1$$

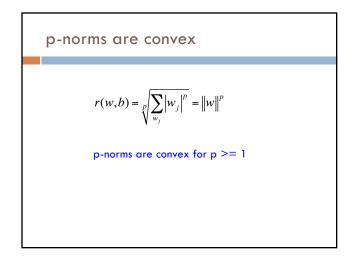
Mathematically, f is convex if for all x_1, x_2 : $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) \quad \forall \ 0 < t < 1$

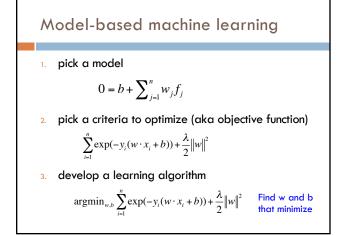
Adding convex functions

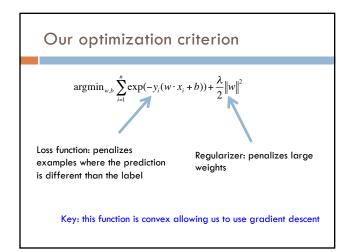
By definition of the sum of two functions: $z(tx_1 + (1-t)x_2) = f(tx_1 + (1-t)x_2) + g(tx_1 + (1-t)x_2)$ $tz(x_1) + (1-t)z(x_2) = tf(x_1) + tg(x_1) + (1-t)f(x_2) + (1-t)g(x_2)$ $= tf(x_1) + (1-t)f(x_2) + tg(x_1) + (1-t)g(x_2)$ Then, given that: $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$ $g(tx_1 + (1-t)x_2) \le tg(x_1) + (1-t)g(x_2)$

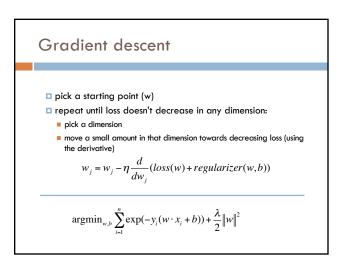


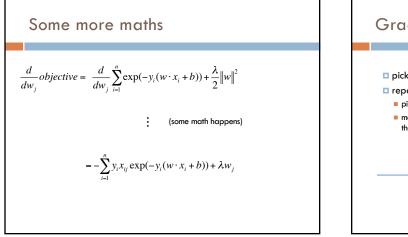


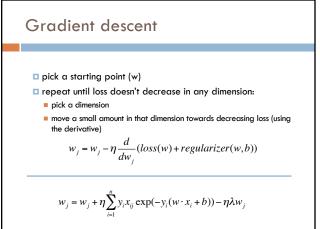


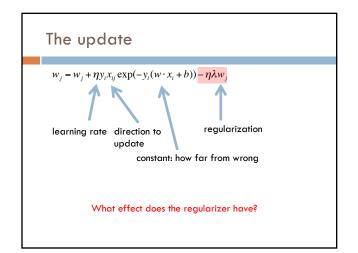


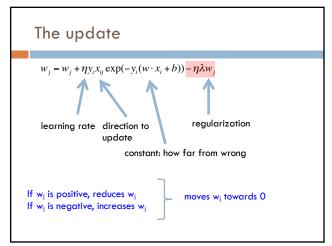


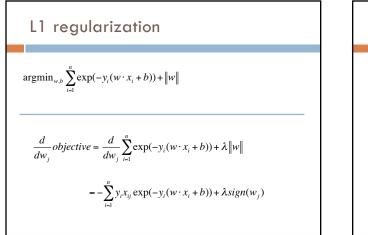


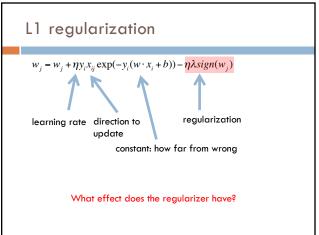


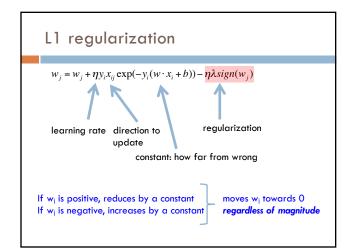


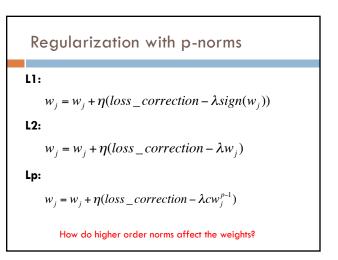


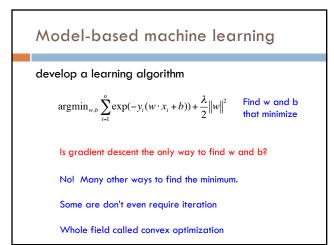


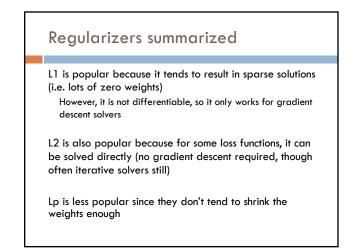












The other loss functions

Without regularization, the generic update is: $w_{i} = w_{i} + \eta y_{i} x_{ii} c$

where

 $c = \exp(-y_i(w \cdot x_i + b))$ exponential

c = 1[yy' < 1]

hinge loss

 $w_j = w_j + \eta(y_i - (w \cdot x_i + b)x_{ij})$ squared error

Many tools support these different combinations

Look at scikit learning package:

http://scikit-learn.org/stable/modules/sgd.html

Common names

(Ordinary) Least squares: squared loss

Ridge regression: squared loss with L2 regularization

Lasso regression: squared loss with L1 regularization

Elastic regression: squared loss with L1 AND L2 regularization

Logistic regression: logistic loss