CS158 - Assignment 8

Neural Networks
Due: Sunday, Nov 10th by 11:59pm

GECTION THAT 1S DEVOTED,
N0 MATTER WHERE I GO IN
LIFE, To PLANNING THE
ULTIMATE TREE HousE "

* OH MAN, IT WOULD BE LIKE SWiss
FAMILY ROBINSON, BUT WITH MUTIALE
TREES CONNECTED BY ... HEY COME UP
TO MY RooM AND SEE THE BLUEPRINTS!

http://xked.com/212/

For this assignment we’re going to be adding our last classifier to our collection, a two-layer neural
network. Before starting this assignment, make sure that you understand how backpropagation
works. The notes are probably the best resources, but the book and the alternate reading will also
be helpful.

Starter

You can find the starter for this assignment at
http://www.cs.pomona.edu/classes/cs158/assignments/assign8/assign8-starter.zip

It is identical to the starter for assignment 6 (and, therefore, also assignment 7) except I have added
two methods to the DataSet class:

e getCopyWithBias: Returns a new copy of the dataset where a “bias” feature has been added
to each example, i.e. the feature size is increased by one and each example in the dataset has
an additional feature with the value 1.0. Note that this creates a completely new copy of the
dataset including the examples and leaves the dataset that you call it on unchanged. This
function will be useful during training.

e addBiasFeature: If you have a newly created a dataset with the additional bias feature, you
may also want to be able to take a new example from the original dataset (without the bias)
and add the bias, e.g. if you want to classify a new example. This method is called on a
dataset where the bias has been added and will add the bias to the new example.

Take a look at these two methods and make sure you understand what they do. You may want to
use them in your neural network code, though there are also other ways to handle the bias.

Specifications

Implement a class called TwoLayerNN that implements the Classifier interface. This class should
implement a two layer network with a variable number of hidden nodes and one output node. Your
class should meet the following specifications:

- Have a constructor that takes the number of hidden nodes as input as an int.

- Have a method called setEta that sets 7, the learning rate, for the network. By default, set
n =0.1.

- Have a method called setIterations that sets the number of times to iterate over the training
data during training. By default, set the number of iterations to 200.

- You neural network should use the tanh activation function for all nodes/neurons and they
should all include a bias (both the hidden layer and the output layer).

- You should initialize all of your network weights with random values between -0.1 and 0.1.

- The classify method should still output a 1 or -1. Any network where the result of the
output node is greater than 0 should be 1 and everything else -1.

- The confidence for the classifier should be the absolute value of the output, i.e. how far
away from 0 is the prediction.

- You may assume that the dataset that the dataset has features from 0 up to
getAllFeatureIndices() .size()-1. You should not, however, assume that all examples
have all the features specified. If a feature is not available for an example, assume the value
is 0.

- Both the dataset given to train and the example given to classify will not have an extra bias
feature. Your classifier will need to handle this internally.

An Example

Neural networks are notoriously hard to debug (and, therefore, to get right). I strongly encourage
you to work through an example by hand. To help you in this endeavor, I provide here the values
for one pass through training a network. You can use this data in a few ways:

1. You can use it to work through an example by hand to make sure you understand the algo-
rithm. It may take you an hour, but it will save you hours in debugging time.

2. If you work through this example by hand, you can also modify it to, for example, ignore the
bias. This can also help you debug your program incrementally.

3. You can use this example to help debug your code and as one check that your code is working
correctly. Note, the numbers should be more or less ezactly the same if you're checking your
code. If not, even if they’re off by a little bit, it likely means you have a mistake.

Starting network:

Figure 1: Starting network

If the model is then trained with the example [1,1] with label 0 with n = 0.5 (a larger value than
the default to see more change), you would get the following output from the nodes:

-0.716297

0.9948131
—

Figure 2: Node outputs

Finally, using these outputs, the weights can all be updated resulting in the new network of:

--0.69724

Figure 3: Updated weights after one iteration

Hints/Advice

e On this assignment more than probably any other we’ve seen so far it is critical that you
have a working example where you know what all of the values are supposed to be, ideally
multiple examples with increasing complexity. Do not hope to just keep changing things in
your code until you get it to work correctly.

e Relatedly, print out lots of information as you are developing. Of course, remove these print
statements before you turn it in.

e Adding in the bias can add another layer of confusion. My advice is to first work through an
example by hand without the bias and get your code working on this example. Then, add in
the bias and try and get the full implementation working.

You may add in the bias however makes the most sense for you, but my advice is:

— Use the new DataSet methods to add a bias value to the training set. If you do it right
at the beginning of the train method you should be able to handle the hidden layer
bias without changing the code at all.

— When you initialize the weights, make sure that you add extra weights for the bias. If
you initialize the weights after you’ve added the extra bias feature to the training data
it should only require adding one more weight to the output layer weights.

— Handle the bias on the output node. It’s only one node, so it should only require a few
minor changes. This you will have to add programmatically.

— Don’t forget that you'll also need to deal with the bias during classification. Again, the
DataSet methods should help you with this.

Experiments

In a file called experiments (pick some reasonable file type) include the analysis below (explicitly
number each part in your writeup). For all of the experiments, use the titanic dataset with binary

features, i.e., titanic-train.csv.

1. Above, I gave you an example network and showed what would happen if you trained the
network on one example. Starting at the original network (Figure 1) using n = 0.5, calculate
the following using your code:

(a) What are the node outputs if we input an example [0.5,0.2] with the label —17 You
should have three values, two for the hidden node outputs and one for the output node.

(b) What are the final weights if we train for one iteration on the example [0.5,0.2] with the
label —17 Write your input weights as a matrix, with the first row, the weights into the
hidden node, the second row the weights into the second hidden row, etc. For example,
the weights for the network in Figure 3 would be:

Hidden weights:

x1 x2 bias
[-0.69724, 1.60275, -1.797243]
[0.031795, 0.60179, -1.3982]

Output weights:
vl v2 bias
[-1.096313, -0.596670, 1.794853]

2. Create a plot that has the number of training iterations on the x-axis and then plots three
things: 1) the sum of the squared errors for the iteration, i.e. 3 (y — #)? (this is the loss
function that you’re trying to minimize), 2) the training accuracy, and 3) the testing accuracy.
Use the default parameters and three hidden nodes.

Do this for one random 90/10 split of the data (i.e. generate the values as the model is
training). Since the errors and the accuracies are on two different scales you can either have
two y-axes (left and right) or you can normalize the loss values so that they’re on a scale from
0 to 1. What we want to visualize is how does the loss correlate with the other two.

Write a few sentences describing this data. Anything interesting? Do you see signs of over-
fitting?

3. Experiment using 10-fold cross validation on how the number of hidden nodes impacts the
performance. Create a table with values from 1 to 10 hidden nodes and include training
and test averages with the default parameters. Note this can take a few minutes to do since
training the models, particularly as the number of hidden nodes goes up, can be slow.

Write a few sentences describing the data. What size network would you use?
4. Experiment with some of the model parameters (i.e. number of hidden nodes, n and the

number of iterations) to try and find the best model possible. State how you experimented,
the final best model and it’s 10-fold accuracy, and any other observations that you had.

Extra Credit

For those who would like to experiment (and push themselves) a bit more (and of course, get a bit
of extra credit) you can try out some of these extra credit options. If you try out these options,
include an extra file called extra.txt that describes what extra credit you did.

- Add in the ability to switch between the tanh activation function and the sigmoid activa-
tion function. Add two methods setTanhActivation and setSigmoidActivation to switch
between them. Do a small experiment to show how their performance differs. Note: since
the sigmoid ranges from 0 to 1, you’ll need to change the negative label to 0 on the Titanic
dataset.

- Add momentum to the network. Add a method called setMomentum that sets the momentum
value. Do a small experiment to show how momentum affects the performance.

- Some other NN feature we talked about in class. If you do these either 1) make sure that your
network still meets the specifications above or 2) create a separate copy with your additions.
Do a small experiment to highlight the effect of your addition.

When You’re Done

Make sure that your code compiles, that your files are named as specified and that you have followed
the specifications exactly (i.e. method names, number of parameters, etc.).

Create a directory with your last name, followed by the assignment number, for example, for this
assignment mine would be kauchak8. If you worked with a partner, put both last names.

Inside this directory, create a code directory and copy all of your code into this directory, main-
taining the package structure.

Finally, also include your writeup file.

zip this folder and submit that file on the submission page on the course web page.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

e Your name (or names) and the assignment number should be at the top of each file

e Each class and method should have an appropriate JavaDoc

e If anything is complicated, it should include some comments.

There are many possible ways to approach this problem, which makes code style and comments
very important here so that I can understand what you did. For this reason, you will lose points
for poorly commented or poorly organized code.

THEN YOU SAY “MORE LIKE
FARTIFICIAL INTELLIGENCE !

[uoesoon
GREAT! NOU LET

Al TIP: To DEVELOP A COMPUTER UITH
THE INTELLIGENCE OF A SIX-YEAR-OLD
CHILD, START LJITH ONE AS SMART AS
AN ADULT AND LET ME TERCH IT SIUFE

http://xked.com/1696/

