
CS151 - Written Problem 4

Solutions

1. Exercise 13.8

a. p(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

b. P(Cavity) = < 0.2, 0.8 >
p(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2, P(∼cavity) =
1-0.2=0.8

c. P(Toothache | cavity) = <(.108+.012)/0.2, (0.072+0.008)/0.2>
= <0.6, 0.4>

d. p(cavity or catch) = 0.108+0.012+0.016+0.064+0.072+0.144=0.416
P(Cavity | toothache or catch) =
<(0.108+0.012+0.072)/0.416, (0.016+0.064+0.144)/0.416> =
<0.4615, 0.5384>

2. Exercise 13.21

This problem is like the cancer problem and you need to use Bayes
rule to calculate this probability:

p(taxiIsBlue | taxiLooksBlue) = α p(taxiLooksBlue | taxiIsBlue) p(taxiIsBlue)

You know p(taxiLooksBlue | taxiIsBlue) = 0.75, but you do not know
the prior probability that the taxi is blue, so you cant calculate the
posterior.

Once you’re given that 9 out of 10 taxis in Athens are green, then you
know that p(taxiIsBlue) = 0.1, so you can calculate:
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p(taxiIsBlue | taxiLooksBlue = α * 0.75 * 0.1 = α * 0.075
p(∼taxiIsBlue | taxiLooksBlue) = α * 0.25 * 0.9 = α * 0.225

p(taxiIsBlue | taxiLooksBlue) = 0.075 / (0.075+0.225) = 0.25
p(∼taxiIsBlue | taxiLooksBlue) = 1-0.25 = 0.75

The next two problems are taken from
http://www-nlp.stanford.edu/∼grenager/cs121//handouts/hw2.pdf

3. In this problem were going to prove the conditional independence prop-
erties of the following Bayesian network:

(a) What are the conditional probability distributions (CPDs) that
are represented in this Bayesian network?

P (Z|Y )
P (Y |X)

(b) Write down the joint probability distribution over X, Y , and Z
as represented by this Bayesian network. This expression should
be written in terms of the CPDs you enumerated in a. (plus any
unconditional distributions).

P (X,Y, Z) = P (X)P (Y |X)P (Z|Y )

(c) Now write down an expression in terms of these for P (X,Z), the
marginal probability of X and Z (hint: sum the variable Y “out”
from the joint distribution you wrote above).

P (X,Z) = P (X)
∑

y P (y|X)P (Z|y)

(d) Based on the expression in c., and the definition of independence,
are X and Z independent?

No. This would only be the case if∑
y P (y|X)P (Z|y) = P (Z)

Notice as well that this expression still has a dependence on X.
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(e) Write down an expression for P (X,Z|Y ), again in terms of these
simplified probability distributions

P (X,Y, Z) = P (X,Z|Y )P (Y ) (using the chain rule)

P (X,Z|Y ) = P (X,Y, Z)/P (Y ) (with some math)

= P (X)P (Y |X)P (Z|Y )/P (Y ) (from part b. above)

and using Bayes’ rule we know that:
P (Y |X) = P (X|Y )P (Y )/P (X)

which gives us: P (X,Z|Y ) = P (X|Y )P (Z|Y )

(f) Based on this expression, and the definition of conditional inde-
pendence, are X and Z conditionally independent given Y ?

Yes, the equation above is the definition of conditional indepen-
dence between X and Z given Y . The only way that Z is in-
fluenced by X is through Y , so conditioned on Y , X and Z are
independent.

4. In this question we examine the conditional independence assump-
tions encoded in the Bayesian network graph topology. Consider the
following Bayesian network:

3



(a) Write down all the independencies not conditioned on other vari-
ables that are enforced by this Bayesian network, using the no-
tation A ⊥⊥ B to mean that A is independent of B.

X ⊥⊥W
X ⊥⊥ Y
W, Y ⊥⊥ X

(b) Write down three independencies which do not necessarily hold
in this Bayesian network.

Z is not independent of X
Z is not independent of Y
Z is not independent of W
Y is not independent of W

(c) Write down all the conditional independencies that are enforced
by this Bayesian network that are not superseded by uncondi-
tional independencies, using the notation A ⊥⊥ B|C to mean that
A is conditionally independent of B given C. For example, you
wouldn’t include Y ⊥⊥ X|W , but this is superseded by Y ⊥⊥ ofX.

W ⊥⊥ Z|Y
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(d) Write down three conditional independencies which do not nec-
essarily hold in this Bayesian network.

Y ⊥⊥ Z|W
W ⊥⊥ Y |Z
Y ⊥⊥ X|Z (notice here that by conditioning on Z, we actually
made two independent variables dependent.
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