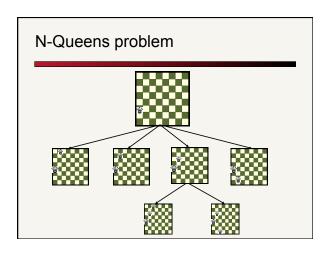


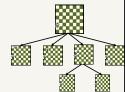
Administrative

- Assign 1 grading...
- Assign 2 extended (now due Friday at 5pm)
 - try and finish at least alpha-beta (and ideally the heuristic) before Wed.
 - good job to those who have already started!
 - use this time to make better players... I want a good tournament ©
- Will post Written 2 solutions
- Look for Written 3 soon...



N-Queens problem

- What is the depth?
 - . 8
- What is the branching factor?
 - **■** ≤8
- 8⁸ = 17 million nodes



- Do we care about the path?
- What do we really care about?

Local search

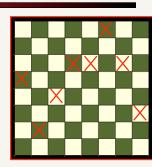
- So far: systematic exploration:
 - Explore full search space (possibly) using principled pruning (A*, . . .)
- Best such algorithms (IDA*) can handle
 - 10¹⁰⁰ states ≈ 500 binary-valued variables (ballpark figures only!)
- but. . . some real-world problem have 10,000 to 100,000 variables 10^{30,000} states
- We need a completely different approach:
 - Local Search Methods or
 - Iterative Improvement Methods

Local search

- Key difference: we don't care about the path to the solution, only the solution itself!
- Other similar problems?
 - sudoku
 - crossword puzzles
 - VLSI design
 - job scheduling
 - Airline fleet scheduling
 - http://www.innovativescheduling.com/company/ Publications/Papers.aspx
 - ..

Alternate Approach

- Start with a random configuration
- repea
 - generate a set of "local" next states
 - move to one of these next states
- How is this different?



Local search

- Start with a random configuration
- repeat
 - generate a set of "local" next states
 - move to one of these next states
- Requirements:
 - ability to generate an initial, random guess
 - generate the set of next states that are "local"
 - criterion for evaluating what state to pick!

Example: 4 Queens

- State:
 - 4 queens in 4 columns
- Generating random state:
 - any configuration
 - any configuration without row conflicts?
- Operations:
 - move queen in column
- Goal test:
 - no attacks
- Evaluation:
 - h(state) = number of attacks

Local search

- Start with a random configuration
- repeat
 - generate a set of "local" next states
 - move to one of these next states

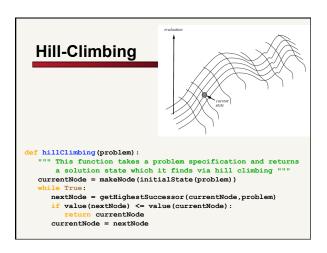
Starting state and next states are generally constrained/specified by the problem

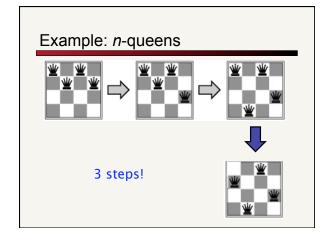
Local search

- Start with a random configuration
- repeat
 - generate a set of "local" next states
 - move to one of these next states

How should we pick the next state to go to?

Start with a random configuration repeat generate a set of "local" next states move to one of these next states pick the best one according to our heuristic again, unlike A* and others, we don't care about the path





■ What is the graph coloring problem?

Graph coloring

- Given a graph, label the nodes of the graph with n colors such that no two nodes connected by an edge have the same color
- Is this a hard problem?
 - NP-hard (NP-complete problem)
- Applications
 - scheduling
 - sudoku

Local search: graph 3-coloring

- Initial state?
- Next states?
- Heuristic/evaluation measure?

Example: Graph Coloring

- 1. Start with random coloring of nodes
- Change color of one node to reduce # of conflicts
- 3. Repeat 2

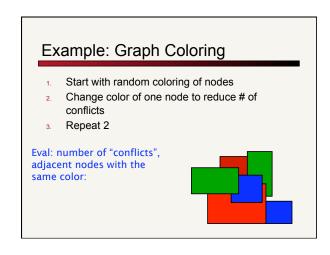
Eval: number of "conflicts", pairs adjacent nodes with the same color:

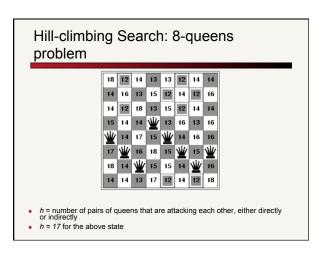
Example: Graph Coloring

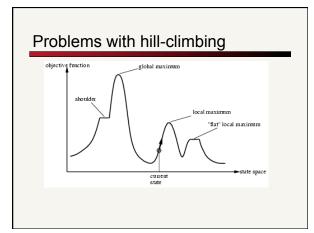
- 1. Start with random coloring of nodes
- Change color of one node to reduce # of conflicts
- 3. Repeat 2

Eval: number of "conflicts", adjacent nodes with the same color:

1

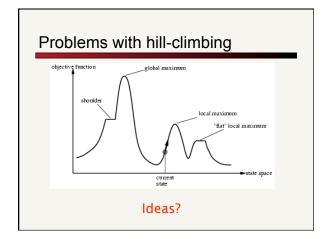






Hill-climbing Performance

- Complete?
- Optimal?
- Time Complexity
- Space Complexity



Idea 1: restart!

- Random-restart hill climbing
 - if we find a local minima/maxima start over again at a new random location
- Pros:
- Cons:

Idea 1: restart!

- Random-restart hill climbing
 - if we find a local minima/maxima start over again at a new random location
- Pros:
 - simple
 - no memory increase
 - for n-queens, usually a few restarts gets us there
 the 3 million queens problem can be solve in < 1 min!
- Cons:
 - if space has a lot of local minima, will have to restart a lot
 - loses any information we learned in the first search
 - sometimes we may not know we're in a local minima/maxima

Idea 3: simulated annealing

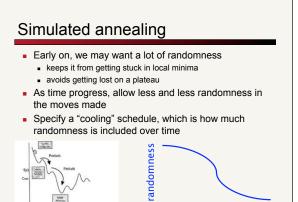
• What the does the term annealing mean?

"When I proposed to my wife I was annealing down on one knee"?

Idea 3: simulated annealing

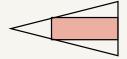
• What the does the term annealing mean?

Annealing, in metallurgy and materials science, is a heat treatment wherein a material is altered, causing changes in its properties such as strength and hardness. It is a process that produces conditions by heating to above the recrystallization temperature and maintaining a suitable temperature, and then cooling. Annealing is used to induce ductility, soften material, relieve internal stresses, refine the structure by making it homogeneous, and improve cold working properties.



Idea 4: why just 1 initial state?

- Local beam search: keep track of k states rather than just one
 - Start with *k* randomly generated states
 - At each iteration, all the successors of all *k* states are generated
 - If any one is a goal state, stop;
 - else select the k best successors from the complete list and repeat



Local beam search

- Pros/cons?
 - uses/utilized more memory
 - over time, set of states can become very similar
- How is this different than just randomly restarting k times?
- What do you think regular beam search is?

An aside... Traditional beam search

- A number of variants:
 - BFS except only keep the top k at each level
 - best-first search (e.g. greedy search or A*) but only keep the top k in the priority queue
- Complete?
- Used in many domains
 - e.g. machine translation
 - http://www.isi.edu/licensed-sw/pharaoh/
 - http://www.statmt.org/moses/

A few others...

- Stochastic beam search
 - Instead of choosing k best from the pool, choose k semi-randomly
- Taboo list: prevent returning quickly to same state
 - keep a fixed length list (queue) of visited states
 - add most recent and drop the oldest
 - never visit a state that's in the taboo list

Idea 5: genetic algorithms

- We have a pool of k states
- Rather than pick from these, create new states by combining states
- Maintain a "population" of states

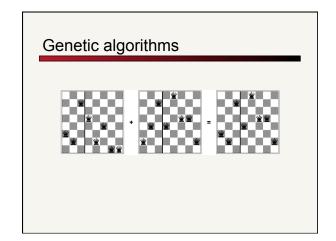
Genetic Algorithms

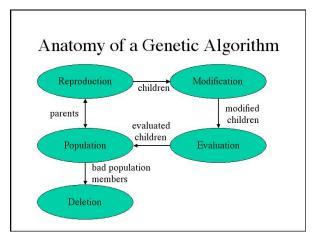
- A class of probabilistic optimization algorithms
 - A genetic algorithm maintains a population of candidate solutions for the problem at hand, and makes it evolve by iteratively applying a set of stochastic operators
- Inspired by the biological evolution process
- Uses concepts of "Natural Selection" and "Genetic Inheritance" (Darwin 1859)
- Originally developed by John Holland (1975)

The Algorithm

- 1. Randomly generate an initial population.
- 2. Select parents and "reproduce" the next generation
- 3. Randomly mutate some
- 4. Evaluate the fitness of the new generation
- Discard old generation and keep some of the best from the new generation
- Repeat step 2 though 4 till iteration N

Genetic Algorithm Operators Mutation and Crossover Parent 1 Parent 2 Child 1 Child 2 1 0 0 0 1 1 Mutation





Local Search Summary

- Surprisingly efficient search technique
- Wide range of applications
- Formal properties elusive
- Intuitive explanation:
 - Search spaces are too large for systematic search anyway. . .
- Area will most likely continue to thrive

Local Search Example: SAT

- Many real-world problems can be translated into propositional logic
 - (A v B v C) ^ (¬B v C v D) ^ (A v ¬C v D)
 - \dots solved by finding truth assignment to variables (A, B, C, \dots) that satisfies the formula
- Applications
 - planning and scheduling
 - circuit diagnosis and synthesis
 - deductive reasoning
 - software testing
 - . .

Satisfiability Testing

- Best-known systematic method:
 - Davis-Putnam Procedure (1960)
 - Backtracking depth-first search (DFS) through space of truth assignments (with unit-propagation)

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C) \land (A \lor \neg B)$$

$$F \land T$$

$$C \land (B \lor \neg C) \land \neg B \qquad C \land (B \lor \neg C)$$

$$F \land T$$

$$C \land \neg C \qquad \times$$

Greedy Local Search (Hill Climbing)

Greedy Local Search (Hill Climbing): GSAT

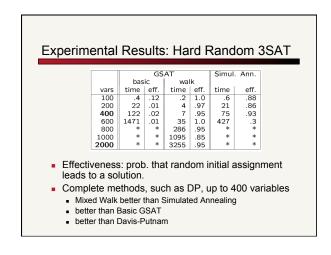
- GSAT:
 - 1. Guess random truth assignment
 - Flip value assigned to the variable that yields the greatest # of satisfied clauses. (Note: Flip even if no improvement)
 - 3. Repeat until all clauses satisfied, or have performed "enough" flips
 - 4. If no sat-assign found, repeat entire process, starting from a different initial random assignment.

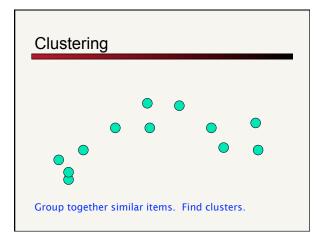
A	В	C	$(A \lor C)$	Λ	$(\neg A \lor C)$	Λ	$(B \lor \neg C)$	Score		
F	F	F	×					2		
F	F	Т	✓		V		×	2		
F	Т	Т	i v		V		√	3		
(Selr	(Selman, Levesque, and Mitchell 1992)									

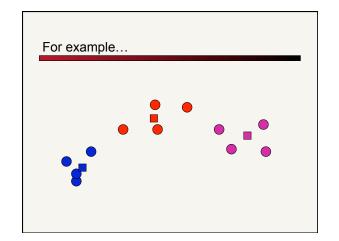
GSAT vs. DP on Hard Random Instances

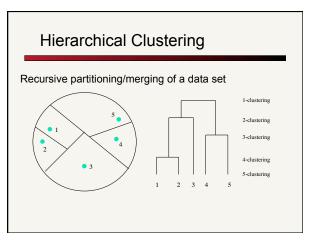
form.		GSAT		Davis-Putnam		
vars	m.flips	retries	time	choices	depth	time
50	250	6	0.5 <i>sec</i>	77	11	1 sec
70	350	11	1 sec	42	15	15 <i>sec</i>
100	500	42	6 sec	10 ³	19	3 min
120	600	82	14 <i>sec</i>	10 ⁵	22	18 min
140	700	53	14 <i>sec</i>	10 ⁶	27	5 hrs
150	1500	100	45 <i>sec</i>	_	_	_
200	2000	248	3 min	_	_	_
300	6000	232	12 min	_	_	_
500	10000	996	2 hrs	10 ³⁰	> 100	10 ¹⁹ yrs

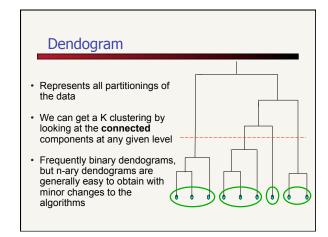
Notes: Define "Hard" later Only "satisfiable" formulae (else GSAT does not terminate)





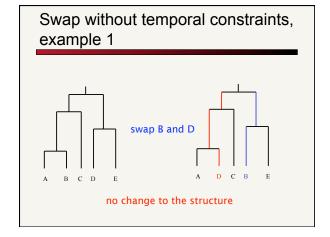


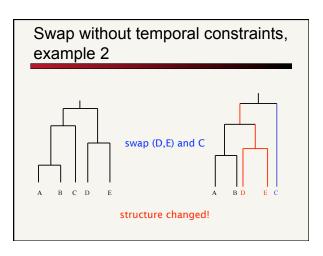




Hierarchical clustering as local search

- State?
 - a hierarchical clustering of the data
 - basically, a tree over the data
 - huge state space!
- "adjacent states"?
 - swap two sub-trees
 - can also "graft" a sub-tree on somewhere else





Hierarchical clustering as local search

state criterion?

Hierarchical clustering as local search

- state criterion?
 - how close together are the k-clusterings defined by the hierarchical clustering

$$hcost = \sum_{i=1}^{n} w_k cost(C_k)$$
 weighted mean of k-clusterings

$$cost(C_k) = \sum_{j=1}^{k} \sum_{x \in S_j} ||x - \mu(S_j)||^2$$
 sum of squared distances from cluster centers

SS-Hierarchical vs. Ward's

Yeast gene expression data set

	SS-Hierarchical	Ward's
	Greedy, Ward's initialize	
20 points	21.59	21.99
	8 iterations	
100 points	411.83	444.15
	233 iterations	
500 points	5276.30	5570.95
	? iterations	

Local search for mancala?