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Abstract
Recent advances in computer vision have opened the door for scalable eye tracking using only a webcam. Such solutions are 
particularly useful for online educational technologies, in which a goal is to respond adaptively to students' ongoing experiences. 
We used WebGazer, a webcam-based eye-tracker, to automatically detect covert cognitive states during an online reading-
comprehension task related to task-unrelated thought and comprehension. We present data from two studies using different 
populations: (1) a relatively homogenous sample of university students (N = 105), and (2) a more diverse sample from Prolific 
(N = 173, with < 20% White participants). Across both studies, the webcam-based eye-tracker provided sufficiently accurate and 
precise gaze measurements to predict both task-unrelated thought and reading comprehension from a single calibration. We also 
present initial evidence of predictive validity, including a positive correlation between predicted rates of task-unrelated thought 
and comprehension scores. Finally, we present slicing analyses to determine how performance changed under certain conditions 
(lighting, glasses, etc.) and generalizability of the results across the two datasets (e.g., training on the data Study 1 and testing on 
data from Study 2, and vice versa). We conclude by discussing results in the context of remote research and learning technologies.
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Introduction

Eye-tracking technology has progressed substantially in ease 
and extent of use over the last few decades. Early systems 
were often intrusive, like contact lenses fitted with search 
coils, and used in only a small number of specialized labora-
tories. More recent systems typically use non-invasive, video-
based technologies and are used extensively in psychology, 
neuroscience, marketing, education, and other fields. These 
technological advances have helped to support major advances 
in our understanding of extensive relationships between gaze 
and cognition (Eckstein et al., 2017). For example, eye-gaze 
behaviors can be used to detect certain cognitive processes 

that can affect learning, such as mind wandering (referred 
to here as task-unrelated thought; TUT), and predict learn-
ing outcomes, such as comprehension (D’Mello et al., 2020; 
Faber et al., 2017; Hutt et al., 2016; Hutt, Mills et al., 2017b; 
Mills et al., 2016). These kinds of gaze-based detectors hold 
promise both as a basic-research tool for understanding the 
cognitive factors that relate to learning and for developing 
adaptive interventions to support more-effective student learn-
ing (D’Mello et al., 2012; Hutt et al., 2021; Mills et al., 2020).

However, to date, the practical application of gaze-based 
approaches to monitor and affect learning in the real world has 
been severely limited by the cost and availability of appropriate 
eye-tracking systems. For example, past studies that used eye 
tracking to infer task-unrelated thought and comprehension were 
limited to highly controlled laboratory settings and/or expensive 
eye-tracking hardware that can cost upwards of $40,000. Thus, 
relatively few individuals and schools have been able to take 
advantage of these promising technologies. Limiting accessibil-
ity to students in wealthy districts is not a viable path forward, 
because it would only further perpetuate the inequities that 
already exist in education. Instead, new tools are needed to bring 
the potential power of gaze-based detectors of cognitive states to 
more real-world contexts with broad and equitable accessibility.
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The primary goal of the current work was thus to provide 
the first evidence of a scalable option for detecting com-
prehension and task-unrelated thought, in real-time, using 
webcam-based eye tracking embedded within a web browser. 
We focused on the use of systems requiring no specialized 
hardware beyond a web camera built into most laptops and 
other computers and publicly available software (Papout-
saki et al., 2016). This approach makes it possible to extend 
the benefits of detector-based measurement and automated 
personalization to a broader, more economically diverse 
population of individuals. As a secondary goal, we aimed 
to show that this system can be used to reproduce and build 
on previous findings that quantified relationships between 
these learning-related cognitive constructs and gaze.

Theoretical background and related work

Eye movements have long been viewed as a window into the 
cognitive processes that unfold during reading (Rayner, Chace 
et al., 2006a; Rayner, Reichle et al., 2006b; Reichle et al., 
2012). Although a complete account of the “eye–mind” link 
is outside the scope of this paper, it is relevant to mention that 
eye gaze is considered a real-time index of the information-
processing priorities of the visual system. For example, visual 
information is acquired primarily during periods when the 
eye remains relatively stable, known as fixations. In contrast, 
visual input is suppressed during saccades, which are ballistic 
movements of the eyes between fixations (Campbell & Wurtz, 
1978; Irwin & Carlson-Radvansky, 1996; Matin, 1974; Zuber 
& Stark, 1966). Therefore, ongoing task goals are often best 
served when patterns of fixation ensure that central gaze, and 
therefore visual attention, is allocated to the most important 
visual information within the environment. This idea is par-
ticularly relevant to reading: fixation patterns are sensitive to 
both features of text being read and the reader’s understand-
ing of that text (Rayner, Chace et al., 2006a; Rayner, Reichle 
et al., 2006b). Below, we briefly summarize past work relat-
ing gaze patterns to reading comprehension and TUT and 
describe the specific contributions of the present work.

Reading comprehension

From a theoretical perspective, reading comprehension is often 
understood in terms of the Construction-Integration model (CI 
model). This model proposes that the mental model constructed 
while reading a text consists of three primary levels (Kintsch, 
1998; McNamara & Magliano, 2009). The first, and most 
basic, level is the surface code. This level reflects the verbatim 
wording and structure of the text. This level fades quickly from 
memory but is used to identify semantic and syntactic relation-
ships. The second level, which is constructed from the first, is 
the textbase. This level preserves the key fact-level information 
that is necessary to eventually represent the “gist” of the text. 

The third level, which builds on the textbase with information 
from the reader’s prior knowledge to construct a more elabo-
rate mental representation of the text’s meaning, is the situation 
model. This level contains all inferences generated to establish 
connections amongst ideas in the text and prior knowledge. 
It may be helpful to consider textbase comprehension as fact-
based memory, whereas situation-model comprehension can be 
seen as an overall conceptual model of the text.

Our understanding of reading comprehension via CI and 
other models has benefitted greatly from the use of eye tracking 
(Rayner, 2009). For example, eye movements, such as regres-
sions (moving backwards through the text) and longer fixations, 
have been linked to difficulties in constructing a situation model 
and consequently comprehension (Rayner et al., 2006; Schot-
ter, Tran, & Rayner, 2014). In addition, eye movements can be 
sensitive to text characteristics such as difficulty (Rayner et al., 
2006) and genre (Kraal et al., 2019). In recent years, attempts 
have been made to use these kinds of gaze-tracking metrics to 
predict comprehension (Ahn et al., 2020; D'Mello et al., 2020; 
Wallot et al., 2015). Historically these predictions have been 
largely unsuccessful in terms of accuracy and generalizability. 
For example, in certain naturalistic reading contexts (e.g., text 
not altered for stimuli presentation) standard global features 
such as fixation duration and number of eye movements were 
not predictive of comprehension (Wallot et al., 2015). Likewise, 
in another study, fixation times and overall reading times were 
also not predictive of long-term memory and comprehension 
on their own (Yeari et al., 2015; Dirix et al., 2020).

Nevertheless, more recent research indicates that compre-
hension prediction from eye gaze may be possible. For exam-
ple, one gaze-based model was able to explain ~ 40% of the 
variance in comprehension on a [describe test/condition] (r = 
0.661, D’Mello et al., 2020). These kinds of eye-gaze-based 
models can also predict text-based comprehension and are 
generalizable across multiple datasets (Southwell et al 2020). 
Despite this progress, there is still a need to: (1) extend these 
predictive models to situation model comprehension, as a 
way to assess whether students have a deep level of under-
standing, as opposed to simply recalling factual details of 
the text (i.e., build a person-independent predictive model of 
whether a correct or incorrect inference is made about a text 
as it unfolds in real-time; while also (2) finding more scalable 
solutions, given that the models mentioned above were all 
trained using a high-cost research-grade eye-tracker with a 
high sampling rate and high-fidelity data (Tobii TX Pro 300).

Task‑unrelated thought (TUT)

One construct that has been closely linked to the disruption 
of comprehension is TUT (D’Mello & Mills, 2021; Phil-
lips et al., 2016; Smallwood, 2011), commonly referred to 
as mind-wandering. TUT is defined as the act of shifting 
from an external task (e.g., reading) to internal thoughts 
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about something unrelated to the current task (Smallwood 
& Schooler, 2015). TUT is ubiquitous in both everyday life 
and during reading, with estimates ranging from 20–40% of 
the time on average (D’Mello & Mills, 2021; Killingsworth 
& Gilbert, 2010; Klinger & Cox, 1987). Critically, TUTs are 
consistently negatively related to measures of performance 
in cognitively demanding tasks including reading compre-
hension (D’Mello & Mills, 2021; Randall et al., 2014).

TUT is thought to be a barrier to building an accurate 
mental model of a text because of its downstream effects on 
processing. For example, the cascade model of inattention 
(Smallwood, 2011) suggests that “perceptual decoupling” 
occurs during TUT, leading to slowed or diminished pro-
cessing at lower levels of encoding (i.e., the surface code). 
This decoupling then causes breakdowns in the ability to 
integrate information across multiple levels, from processing 
the individual words to the meaning of a sentence. As such, 
interactive learning software that can adaptively respond to 
TUT improves students' deep comprehension (Mills et al., 
2020), but reliable detection is a necessary first step.

A growing body of research suggests that changes in eye 
movements can be indicative of when people are off-task. 
For example, this relationship has been used to build gaze-
based TUT detectors during reading (Bixler & D’Mello, 
2014, 2016; Hutt, Hardey et al., 2017a). Commonly, super-
vised classification models are trained to discriminate 
between responses to embedded mind-wandering probes 
(“yes, I was off task” versus “no, I was on task”) using global 
(i.e., not context-specific) gaze features (such as average 
fixation duration, fixation dispersion, saccade frequency, 
angle, etc.). The models are then validated by testing their 
generalizability to unseen individuals.

As with comprehension, much of the work in this space 
has leveraged research-grade eye tracking in the laboratory. 
However, some recent work supports the idea that lower-
fidelity eye tracking can be used to automatically detect 
TUT. For example, Hutt et al. (2016, 2019) demonstrated 
that TUT detection could also be achieved with a COTS 
eye-tracker, which retails for $100–150 USD. Though this 
tracking system uses a lower sampling frequency and pro-
vides less accurate and precise gaze measurements than 
more expensive systems, successful TUT detection was still 
possible and was later used to deliver learning interventions 
that benefited learners with low prior knowledge (Hutt et al., 
2021). Though these eye-trackers present a more affordable 
approach, they still require additional, specialized hardware, 
thus limiting overall scalability.

Overview and novelty of current work

To overcome the limitations in scalability inherent to using 
expensive and/or specialized equipment, we focused on 

webcam-based eye-trackers that are beginning to be used 
in research and other settings (Degen et al., 2021; Semmel-
mann & Weigelt, 2018; Yang & Krajbich, 2021). A known 
limitation of these webcam systems is that they tend to be 
less accurate and precise than many specialized video-based 
systems (Zhang et al., 2019), particularly when they are 
deployed in real-world conditions in which lighting, head 
position, and other factors are not as controlled as typically 
are in laboratory settings. Thus, a major, open question is 
whether webcam systems provide a sufficiently reliable 
estimate of gaze position to be useful for monitoring gaze-
sensitive cognitive states during reading.

A few studies have shown promise in this regard. For 
example, an unsupervised classification method has been 
used to derive areas of interest (AOIs) from gaze data col-
lected with a webcam as users interacted with a communica-
tion task (Tran et al. 2019). In that study, gaze points were 
clustered to model users’ interpersonal behavior and ulti-
mately improve interactions. Though AOIs present a slightly 
coarser-grain analysis than may be needed to monitor cog-
nitive states (D’Mello et al., 2020), this work demonstrates 
that webcam-based gaze tracking is still picking up on a 
valid interaction signal between eye movements and com-
prehension. Particularly encouraging is recent work compar-
ing webcam-based eye movements to data collected from 
the Tobii Pro Glasses 2 (Valliappan et al., 2020). Across 
four tasks, data from the standard camera embedded in a 
smartphone was comparable to data collected from the Tobii 
glasses. Though the Tobii glasses are not necessarily a “gold 
standard” PCCR tracker, with sampling rates lower than that 
of the EyeLink and other lab-based trackers, this work pre-
sents an important comparison between PCCR approaches 
and methods that utilize the RGB webcam. Our work builds 
upon these successes (though using a different gaze-tracking 
system) to examine if webcam data is sufficient for real-time 
modeling of TUT and comprehension.

Finally, almost all of the work reviewed above has used 
predominantly White samples to build detectors of TUT and 
comprehension, limiting its generalizability and potential 
scalability. Here we intentionally collected data from two 
different populations (Study 1: predominantly white univer-
sity students; Study 2: mostly non-White adults recruited on 
the online platform Prolific) to see how our models general-
ize across these populations, i.e., to check for algorithmic 
bias in the eye-tracking technology.

Methods

Below we describe our general data collection method 
for two different studies, noting any (minor) differences 
between the two.
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Participants

In Study 1, 105 University of New Hampshire students partici-
pated in the experiment (age range 18–25, 77 self-identifying 
as female, 27 as male, one as non-binary; 83.1% White) for 
course credit in their psychology-related courses. In Study 
2, 173 participants (age range 18–52, 130 self-identifying 
as female, 40 as male, three as non-binary) were recruited 
through Prolific, an online data collection platform that allows 
individuals to sign up and receive compensation for participat-
ing in research studies. Participants were paid $4 for complet-
ing the study. To create a more diverse sample, we used the 
Prolific selection criteria to oversample participants of color 
(see Table 6 for a complete breakdown of participants by race).

The location of both studies was at the participant’s own 
discretion (wherever they chose to complete the online study), 
without a researcher present, and no video (other than for gaze 
tracking) was recorded. As a result, we have no structured 
way to evaluate when tracking error is a fault of the tracker 
and/or when it might be a context issue (e.g., the participant 
is looking down, or covering their face with their hand etc.).

Materials

Task

The study used a narrative anticipation task, which involved 
reading 65 narrative stories taken from Cranford and Moss 
(2018). The goal of this task was for participants to make an 
inference about the ending of a story, based on information 
given, which is a common exercise for teaching and/or devel-
oping reading comprehension skills. Each story consisted of 
three sentences and had three possible endings. Each ending is 
initially plausible, but there is only one appropriate ending after 
reading all three sentences. An example story is: “Larry always 
wanted to know what it was like to live in a foreign country. He 
went to read at his favorite store on main street. The steam rose 
from the cup as Larry brought it to his lips and slowly…”. The 
three ending options were: (1) “sipped coffee”, 2) “bought muf-
fin”, and 3) “rolled marble”. As the story unfolds, the incorrect 
options become less plausible until the reader can make the 
inference that the only appropriate ending is “sipped coffee.” 
We note that this task does not reflect reading long, extended 
texts, but rather a reading comprehension skill-building exercise 
common in English-language learning, standardized tests (and 
test-prep), and other K-12 learning platforms.

Webcam‑based gaze tracking

Gaze locations were collected using WebGazer (Papoutsaki 
et al., 2016). WebGazer is an online, webcam-based eye-
tracker written in JavaScript that can be integrated in any 
website to infer gaze locations in real time using the user’s 

webcam. WebGazer initially uses facial and eye detection 
algorithms to detect pupil locations and represents the eye as 
an image patch. It then maps pupil locations and eye features 
to gaze locations using a ridge-regression model. WebGazer 
uses all eye features within a temporal interval of 500 ms 
when determining the onscreen x- and y-coordinates. Based 
on user interactions such as clicks and mouse movements 
that normally occur during web navigation, WebGazer is 
also able to continually self-calibrate to maintain mapping 
accuracy. In a lab study, WebGazer achieved 4.17° gaze 
accuracy (Papoutsaki et al., 2016). As a point of compari-
son, commercial eye-trackers achieve <1° gaze accuracy. It 
should be noted that because WebGazer runs on the client 
side, sampling rate cannot be guaranteed and varies as a 
result of available resources.

Procedure

After participants provided consent and remote connec-
tion to the webcam had been established by the software, 
participants completed WebGazer’s calibration process. 
Participants were directed to look at a red dot as it moved 
to 20 different locations around the screen. In Study 2, a 
pseudocalibration was additionally used to help account for 
possible calibration drift over time. The pseudocalibration 
did not affect WebGazer’s calibration but created an adjust-
ment that could be applied to the gaze locations reported by 
WebGazer. In the pseudocalibration, participants looked at 
red dots at four locations which corresponded to the three 
options and center of the screen. The pseudocalibration was 
performed before the first main trial and after any trial in 
which no pseudocalibrated gaze locations were located in 
the option locations during the choice screen. Aside from 
the population differences and pseudo-calibration, nothing 
else was changed across the two datasets. For this initial 
feasibility study and to ensure that the two datasets were 
comparable, the pseudocalibration was not used to correct 
any data collected in the second study.

After calibration, participants completed the narrative 
anticipation task. The studies used a single between-par-
ticipants manipulation with participants randomly assigned 
to one of two conditions related to how the stimuli were 
delivered. This manipulation is not relevant for the current 
research, the goal of which is to build a generalizable detec-
tor that works in either of the two conditions. We neverthe-
less describe the design in full here in case others wish to 
replicate our work. The two conditions were: (1) “audio”, in 
which participants heard a reading of each sentence; and (2) 
“visual”, in which participants read each sentence presented 
on the screen. Figure 1 shows the timeline for a trial. For 
each trial, participants were initially presented with the three 
endings for a story and asked to familiarize themselves with 
the on-screen location of each option before progressing. 
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Participants controlled when to move onto the next sentence, 
but in the audio condition they could not progress until the 
reading of the sentence was finished. In both conditions, 
the three answer options were displayed on the screen at all 
times, making it possible to collect gaze data relative to the 
positions of those opinions throughout each trial.

Comprehension assessment

After reading or hearing all three sentences, participants 
were asked to click on the option that best completes the 
story. Participants completed five practice trials and 60 main 
trials. After completion of the narrative anticipation task, 
participants completed a demographic survey. The experi-
ment lasted ~ 40 min.

Task‑unrelated thought (TUT) probes

Detectors of TUT have almost exclusively relied on self-
reports from participants to determine the ground truth data 
labels. The gold-standard in the field is to use a probe-caught 
method (Varao-Sousa & Kingstone, 2019; Weinstein, 2018), 
whereby participants are interrupted periodically to report on 
whether they are off-task (thinking about something else) or 
on-task at the current moment. Previous work has vetted the 
probe-caught method in a variety of ways, showing consistent 
results and reliable correlations with eye-gaze, pupillometry, 
reaction times, and performance (Foulsham et al., 2013; Frank-
lin et al., 2013; McVay & Kane, 2012; Randall et al., 2014).

We used this method to probe participants on half of the 
stories. On these probe trials, participants were asked to 
report whether they were thinking about the story (on-task) 
or something else (off-task). The probes' timing was bal-
anced across sentences to prevent predictability, occurring 

for 30 stories with ten after the first sentence, ten after the 
second sentence, and ten after the third sentence. Timing of 
the probe – both in terms of which story probes occurred and 
at what location within the story (sentence 1, 2, or 3) – was 
randomly assigned.

Feature engineering

For TUT models, we calculated gaze features from the time 
of screen up until the probe occurred to avoid using any data 
from after the probe. Because the probe could appear at dif-
ferent times throughout the trials, only the previous screen 
was used to ensure a consistent amount of data per instance. 
For example, if the probe occurred just after screen two, the 
gaze data from screen two would be used to predict TUT; if 
the probe occurred just after screen three, then screen three 
would be used etc. No eye-tracking data were used from 
the probe screen itself. For the comprehension models, the 
question had a consistent placement at the end of the reading 
(three screens), allowing us to use more data and still have 
consistent data volume across instances. We calculated fea-
tures from all three screens of reading prior to the user being 
presented with the question. If a probe occurred during a 
trial, the gaze data from the probe screen was excluded. No 
data from the choice screen were used.

We converted the raw gaze data into features to use in 
our prediction models. Based on previous work (Bixler 
& D’Mello, 2016; Hutt et al., 2019), we investigated both 
global and local gaze features. We did not consider con-
textual/interaction features such as response time, although 
some of these features are implicitly encoded in the gaze 
features; e.g., more samples likely correspond to longer 
response times. The specific global and local feature cat-
egories that we used are described below.

Fig. 1  Sample trial sequence. The probe screen could occur after any reading screen
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Global gaze features

Global gaze features focus on general gaze patterns and are 
independent of the content on the screen. The global fea-
tures we used were selected to relate to previous studies of 
comprehension and TUT, while allowing for the reduced 
accuracy that was expected from WebGazer compared to 
in-laboratory systems. Specifically, for each sentence/screen 
we calculated: (1) the number of gaze samples, which is a 
measure of how much valid gaze data there was during a 
sentence, giving an overview of how much the participant 
was looking at the screen; (2) the number of unique gaze 
samples, which is a measure of the number of distinct screen 
locations where a user looked. This value, though correlated 
with feature 1, removes duplicate screen locations, so gives a 
measure how much gaze may be moving around the screen; 
this is then further extended by (3) the dispersion of gaze 

points, which we quantified as the root mean square of the 
distances of each fixation to the average gaze position and 
is a measure of how spread out the gaze was. Because our 
data collection was based on variable and unknown sampling 
rates, we did not attempt to calculate fixation durations or 
identify saccades, as has been done in previous work. Addi-
tionally, our metrics do not correct for sampling rate, instead 
evaluating the robustness of gaze tracking just from the raw 
data. Future work should address this limitation.

Local gaze features

In contrast to the global features, local features encode where 
the gaze is fixated and thus were based on both gaze location 
and the relative screen content. To calculate these features, 
we first defined the three option locations and the center of 
the screen (sentence location) as areas of interest (see Fig. 2). 

Fig. 2  Heatmap overlay showing a participant’s eye gaze during a reading page (top) and the choice page (bottom) of the task. Red indicates high 
concentration of fixations; purple indicates low concentration of fixations
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For each page/screen, we then calculated the time spent on 
each AOI. Finally, we added context to these actions, based 
on the task (see Table 1). As this was an initial experiment, the 
features selected represent more fundamental local features 
that though relevant to this work and reading literature, again 
acknowledged the expected reduced accuracy of the gaze 
tracker. We did not include features such as gaze on individual 
words that we considered to be too task-specific, given that 
our goal was to obtain a more general understanding of the 
potential for generalizable gaze tracking in this domain.

Figure 2 shows example heatmaps of one participant's 
eye gaze during a reading screen, and before providing their 
answer. Each of the three options were shown in circles 
with diameters equal to 20% of the screen height (e.g., if 
the screen height was 100 pixels, the diameter of the stimuli 
would be 20 pixels), each of which was associated with 
a slightly larger AOI (with diameters equal to 30% of the 
screen height). In this case, the gaze followed some expected 
patterns, including higher gaze densities around the AOIs on 
the screen. However, calibration drift was also evident, for 
example in the top image where calibration has likely drifted 
to the left. Subsequent analyses that used the eye-gaze data 
to predict cognitive states (TUT and comprehension) thus 
allowed a margin for error in AOI calculations.

Classification models and validation

To relate global and local gaze features to the TUT probes 
and reading-comprehension scores, we used scikit-learn 
(Pedregosa et al., 2011) to implement five classifiers (logistic 
regression, random forest, gradient boosted, support vector 
machine, and decision tree). We also implemented XGBoost 
with a separate library (Chen & Guestrin, 2016). Where 
appropriate, hyperparameters were tuned on the training set 
using scikit-learn’s cross-validated grid search (Pedregosa 
et al., 2011). Because of the limited volume of data and 
feature space, we did not consider neural networks or deep 
learning approaches at this time (see Future work, below).

We validated the models with a participant-level, ten-
fold cross-validation scheme. This process ensures that no 
instances of any individual participant could appear in both 
the training and test sets within a fold. All features were 
z-scored by condition (visual or audio) within each fold. We 
used the training data to calculate the statistics needed for 
z-scoring (mean, standard deviation, max, min), which were 
then subsequently applied to testing sets.

For both TUT and comprehension, we observed substan-
tial imbalance between the classes (i.e., many more instances 
were not TUT than were). Class imbalance can present chal-
lenges, because supervised learning methods tend to bias 
predictions towards the majority class label. To compensate 
for this concern, we used the SMOTE algorithm (Chawla 
et al., 2002) to create synthetic instances of the minority 
class by interpolating feature values between an instance and 
its randomly chosen nearest neighbors until the classes were 
equated. SMOTE was applied only on the training sets. The 
original class distributions were maintained in the testing 
sets to ensure the validity of the results.

Evaluation The analyses are described below, first for TUT 
and then for comprehension (correct/incorrect answers). 
Given the class imbalance in our data, we report precision, 
recall, and  F1 scores as metrics for each class. To support 
easier comparison with previous work, we also report kappa 
value (Landis & Koch, 1977) to correct for chance. Preci-
sion, which provides detail on how accurate the model is for 
a specific class, was calculated as the number of true posi-
tives divided by the total number of true instances (in ground 
truth). Thus, for example, 40 correct predictions about of 
100 instances of a given class X corresponds to precision 
of 0.4. Recall, sometimes also called true-positive rate, or 
sensitivity, refers to how many instances of class X were 
predicted correctly. Both metrics are informative about our 
model, and can present a trade-off; for example, if you over 
predict class X you may increase recall but decrease preci-
sion.  F1 is defined as the harmonic mean between precision 
and recall, in order to combine the two scores into one mean-
ingful evaluation.  F1 was calculated as:

The highest possible  F1 score is 1 (indicating perfect 
precision and recall), and the lowest possible score is 0 
(indicating that either precision or recall is 0). We report 
the individual metrics along with the combined metric in 
acknowledgement that whereas  F1 weights precision and 
recall equally, in practice different types of misclassifica-
tion can be more or less important (Hand & Christen, 2018).

To support easier comparison with previous work, we 
also report kappa values (Landis & Koch, 1977). The kappa 

2
precision × recall

precision + recall

Table 1  Local feature description per page

*In the case where the sentence was not shown, this feature is gaze in 
the center of the screen

Feature Description

Option 1 Gaze Number of Gaze points on Option 1
Option 2 Gaze Number of Gaze points on Option 2
Option 3 Gaze Number of Gaze points on Option 3
All Options Gaze Sum of three above features
Sentence/Center Gaze Number of Gaze points on the Sentence/

Center *
Correct Answer Gaze Number of Gaze points on the correct option
Incorrect Answer Gaze Number of Gaze points on incorrect options
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metric is similar to  F1 score in that it can be viewed as a com-
bination of precision and recall. However, unlike  F1 score, 
the kappa metric attempts to correct for chance. Kappa val-
ues > 0 indicate improvement over chance, whereas a kappa 
value of 1 indicates perfect classification.

Baseline/chance models for comparison We included two 
different “baselines” for model-comparison purposes. This 
first chance baseline was generated using the Dummy Classi-
fier in scikit-learn. The Dummy Classifier randomly assigns 
a label based on the base rate of the training sample; e.g., 
if 25% of the training data was TUT, then there is a 25% 
chance the dummy classifier will predict TUT.

As an additional baseline model, we trained a model 
using interaction data that is separate from the webcam 
data. Specifically, we used the time that participants spent on 
either the page before the probe (for TUT) or all three pages 
(for comprehension), because reading time can be correlated 
with TUT and comprehension (Mills et al., 2017). The main 
purpose of these baselines was to determine whether the eye 
tracking was providing information beyond what we could 
get from less complex means, such as basic log files. By 
comparing to these baseline models, we can assess if, and 
by how much, adding gaze data can help to improve predic-
tions of TUT and comprehension beyond reading time. Put 
even more simply, we can ask; is the eye tracking worth the 
trouble?

Results

Before considering the results of our predictive models, we 
first consider the gaze itself. Though it is not possible in 
this experimental design to statistically evaluate the qual-
ity of the gaze recognition, or indeed the precision of the 
points recorded, we are able to anecdotally analyze the 
data through the heatmaps generated. As noted above, we 
observed drift in the recordings, and that in the reading task, 
gaze did not always appear to be on the sentence being read. 

This is somewhat to be expected, prior work has consistently 
reported lower gaze precision for webcam-based approaches 
(Zhang et al., 2019). This challenge has been addressed in 
the past by looking at relative changes in gaze patterns rather 
than specific gaze locations (D’Mello & Mills, 2021; Hutt 
et al., 2016; Mills et al., 2020), an approach we adopted as 
well.

To evaluate the predictive models, we begin by presenting 
results using a combined dataset with all participants from 
both studies in a single model. This approach allowed us 
to test the feasibility of the webcam-based eye-tracker for 
detecting TUT and comprehension with the largest, most 
diverse dataset under realistic conditions likely to introduce 
multiple, uncontrolled sources of error. After examining 
the combined dataset results, we then present model perfor-
mance for each individual study, as well as cross-training 
results (train on Study 1, test on Study 2, and vice versa). 
Finally, we conclude with a slicing analysis to determine if 
model performance changes under various environmental 
conditions or across racial/ethnic subgroups.

Overall models

Correctness

Across all participants and conditions, correct answers were 
given 88% of the time. Across detection methods, gaze pat-
terns measured via the webcam-based eye-tracker could be 
used to predict correct responses (indicating comprehen-
sion) better than chance (Table 2). The best performance 
was achieved by models using only Local features (the time 
spent in the three AOIs corresponding to the locations of 
the alternatives on the screen; kappa = 0.57; there was no 
reliable difference in performance when the models were 
tested separately for conditions in which the stimuli were 
presented as text or audio, t test p = 0.19). Models using 
only Global features (the number of gaze points, number of 
unique gaze points, and dispersion of gaze points) were also 
above chance but only marginally outperformed the interac-
tion feature baseline (kappa = 0.15 vs 0.11). Combining 
these two feature sets produced worse performance than just 

Table 2  Results for predicting correctness and incorrectness

Features Classifier SMOTE Kappa Correct Incorrect

F1 Precision Recall F1 Precision Recall

Chance Baseline N 0.00 0.90 0.91 0.90 0.11 0.11 0.11
Reading Time Baseline Gradient Boosted Y 0.11 0.86 0.84 0.92 0.13 0.20 0.05
Global Gradient Boosted Y 0.15 0.91 0.90 0.92 0.21 0.25 0.19
Local XGBoost Y 0.57 0.96 0.93 0.99 0.60 0.94 0.44
Global + Local XGBoost Y 0.54 0.96 0.94 0.98 0.57 0.79 0.46
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Local features, potentially due to increased noise in the data-
set. Thus, under these (admittedly limited) conditions, our 
results are encouraging and suggest that webcam-based eye 
tracking can be useful for assessing constructs like compre-
hension in online environments.

In terms of individual label values (correct or incorrect), 
the models also showed an increase in  F1 when predicting 
incorrect responses relative to chance, with higher values for 
both precision and recall. Thus, the model could be used to 
identify when someone did not understand a text as well as 
when they did. This result is likely relevant for future appli-
cations, where the ability to diagnose when someone makes 
an incorrect inference can be a possible place for real-time 
interventions.

Given that there were two conditions for how the stimuli 
was delivered in the experiment (though these were not 
explicitly examined here) we compared participant-level 
accuracy of the best performing model across condition with 
a t test. Results showed no significant difference (p = 0.19).

TUT 

Gaze patterns from the webcam-based eye-tracker were also 
able to be used to predict TUT (Table 3). Specifically, the 
results indicate that: (1) all models outperformed the chance-
baseline, and (2) the combined Global + Local model had 
the best performance (which was similar for text or audio 
conditions across participants, p = 0.36). Our finding that 
the most effective TUT prediction for this task relies on a 
mixture of general (Global) and context-specific (Local) 
features differs from past results. In general, global features 
have tended to be most predictive of TUT, whereas context-
sensitive (local) features have provided a variety of results 
across different domains and tasks (Bixler & D’Mello, 2016; 
Hutt et al., 2019; Hutt, Hardey et al., 2017a). For example, 
local features provided improved TUT detection in reading 
from extended texts versus global features alone (Bixler & 
D’Mello, 2016). Our work shows that this benefit of local 
features can also be found in the kind of brief comprehen-
sion exercises we used.

These results are somewhat modest in magnitude but are 
in line with previous studies using commercial eye-trackers 

(Bixler et al., 2015) that reported kappa values of ~ 0.20 
(Bixler et al., 2015; Blanchard et al., 2014; Mills et al., 
2016). They thus demonstrate that even with lower-qual-
ity, scalable sensing, we can still harness the so-called 
“eye–mind link” and detect TUT with webcam eye-tracking 
data. The eye-gaze models notably outperform the baseline 
response time-only model, indicating that there is a valid 
signal being detected. We note from the precision and recall 
scores indicate that a false positive is less likely than a false 
negative. Though there is still inaccuracy, this is potentially 
useful if triggering interventions and shows potential for 
future work.

We again compared participant-level accuracy across 
the two stimuli conditions in the experiment (whether the 
sentence was presented as text, or audio) with a t test. We 
observed no significant difference in model accuracy (p = 
0.36)

Convergent validity

We explored the convergent validity of our models by cal-
culating a set of correlations derived from the model’s pre-
dictions and the ground-truth data. Each correlation was 
calculated at the participant level in order to avoid violating 
independence assumptions. We calculated four participant-
level values: TUT Ground Truth (proportion of probes to 
which participants reported TUT), Correctness Ground 
Truth (proportion of correct inferences made), TUT pre-
dicted (the average TUT prediction for that participant) and 
Correctness Prediction (the average Correctness predic-
tion for that participant. The resulting correlation matrix is 
shown in Table 4.

The models’ predictions of TUT and correctness were 
each positively correlated with their respective ground-truth 
labels. Specifically, actual and predicted TUT were weakly 
correlated (Spearman’s rho = 0.27), whereas actual and 
predicted correctness were strongly correlated (rho = 0.77, 
which is comparable to correlations reported in D’Mello 
et al., 2020, with higher-quality equipment). For a few of 
the participants, the model-predicted rate for question cor-
rectness was identical to the ground-truth rate, contributing 
to this high correlation.

Table 3  Results for predicting TUT 

Feature Set Classifier SMOTE Kappa Weighted  F1 
Score

F1_TUT Prec. TUT Recall TUT 

Chance Baseline N 0.00 0.53 0.18 0.18 0.18
Reading Time Baseline Logistic Regression Y 0.04 0.60 0.10 0.25 0.04
Global Gradient Boosted Y 0.07 0.65 0.24 0.32 0.20
Local Gradient Boosted Y 0.12 0.67 0.22 0.32 0.17
Global + Local XG Boost Y 0.15 0.69 0.25 0.36 0.21
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Moreover, the models’ predicted rates of TUT were neg-
atively correlated with ground-truth correctness (average 
question score). The magnitude of this negative correlation 
was somewhat similar when using predicted TUT (rho = 
– 0.23) or participant-level ground-truth TUT rate (measured 
as the average of probe responses; rho = – 0.11). This test of 
convergent validity is based on the consistent negative rela-
tionship between self-reported instances of TUT and read-
ing comprehension scores in the literature, with an average 
reported effect size of r = – 0.28 (D’Mello & Mills, 2021).

Feature importance

To evaluate the importance of each gaze-based feature to our 
predictive models, we calculated SHapley Additive exPla-
nations (SHAP) values (Lundberg & Lee, 2017) using the 
SHAP library in Python. For the two best models of TUT 
and Correctness reported above, we computed the mean 
absolute SHAP value of each feature, per fold, and then aver-
aged across folds to generate one value per feature (each 
between 0 and 1).

TUT  The variance in feature importance was low (SD = 
0.01), implying that an ensemble of features was neces-
sary for effective prediction. The top three features were all 
global features, characterizing the number of gaze points 
on a given page. This result aligns with earlier research 
using eye gaze for TUT detection, which has shown that the 
number of fixations is highly predictive (Bixler & D’Mello, 
2016; Hutt et al., 2019). The most predictive feature was the 
number of gaze points on the third page. This result indicates 
that the last page provided more predictive power than the 
previous two but could reflect the proximity of the third page 
to the probe.

Correctness The variance in feature importance was also 
very low (SD = 0.01), although slightly larger than for TUT. 
The most important features for this model were related to 
the number of gaze points on the answer options across 
all three sentences and the time spent looking at incorrect 
options. It should be noted that feature importance values for 
the three options were very close to each other (a range of 
0.003), indicating that readers were most likely to be correct 

if they had spent time considering all options rather than 
focusing on one answer (even if it was the correct one). In 
both cases, we note the low variance between SHAPley val-
ues. Additional feature engineering and refinement may pro-
vide a more detailed insight into the relationships between 
individual eye movements and these two constructs.

Individual studies and cross‑training analyses

The above analyses combined both datasets to: (1) increase 
the amount of data available for training the model, and (2) 
avoid overfitting to a particular sample at the outset. Below, 
we report analyses that treated each study as a separate 
source of data to further probe the reliability and generaliz-
ability of our models that use webcam-based eye tracking 
to predict TUT and comprehension. We examined differ-
ent combinations of training and testing sets (see Table 5). 
In cases where the model was trained and tested on data 
from the same study, the same cross validation approaches 
described above were employed. In cases where the train-
ing and test sets were from different studies, models were 
trained on the entire training data set and tested on the entire 
testing data set. We interpret the results in terms of whether 
there are algorithmic biases manifesting as a degradation in 
prediction from one sample to another; i.e., does training the 
model on the predominantly White sample generalize to a 
more diverse sample, and vice versa?

Individual dataset models Results from training and test-
ing on the individual datasets (i.e., train on Study 1 or 2, 
test on the same study) were similar to those from the com-
bined datasets (Table 5; also see Supplementary materials 
for full details on individual dataset results). We did not 
observe major changes in the kappa values for the individual 
datasets (e.g., train on Study 1, test on Study 1) compared 

Table 4  Correlation matrix for student-level TUT and correctness rates, both ground truth values, and predicted values from the best reported 
models

*Indicates p < 0.05

TUT Ground Truth Correctness Ground Truth TUT Predicted

Correctness Ground Truth – 0.109
TUT Predicted 0.277* – 0.272*
Correctness Predicted – 0.126* 0.774* – 0.231*

Table 5  Kappa values from cross training experiments

Model Test Study 1 Test Study 2

Correct Inference Train Study 1 0.55 0.41
Train Study 2 0.30 0.58

TUT Train Study 1 0.19 0.15
Train Study 2 0.09 0.12



Behavior Research Methods 

1 3

to the combined dataset results presented above. Study 1 
slightly outperformed the combined data for TUT (0.15 for 
combined compared to 0.19 in Study 1), whereas Study 2 
slightly outperforms the combined dataset for correctness 
(0.55 for combined compared to 0.58 in Study 2). These 
findings suggest that there were no strong and systematic 
biases in the eye-tracking system that might have affected 
its ability to collect interpretable gaze data within each of 
the two study populations.

Cross‑training models When models were trained on one 
dataset and tested on the other dataset (keeping them com-
pletely independent), there was a slight degradation in per-
formance. However, all models still performed above the 
respective chance baselines. Moreover, the degradation was 
bidirectional: in all cases, training on one sample (Study 1 
or Study 2) led to a degradation in performance when tested 
using the other sample. Although these results indicate some 
level of generalizability between the two datasets, the dif-
ferences should be noted. These results serve as a reminder 
of the importance of context and eventual use case when 
collecting/selecting training data.

Slicing analyses

To examine the data in finer detail, we used slicing analyses 
(Gardner et al., 2019) to identify if and how the predictive-
ness of the webcam data for reading comprehension and 
TUT differed for particular subpopulations. The best per-
forming models for each construct (Tables 2 and 3, respec-
tively) were evaluated in the slicing analysis, as well as 
models trained on each individual study. We considered four 
relevant subpopulations: (1) whether or not the participant 

wore glasses, (2) the lighting of the room the participant 
was in, (3) whether they reported having ever received treat-
ment for a neurological problem, and (4) race/ethnicity. For 
each of the four categories, we relied on participant self-
report and self-identification. For each subpopulation, we 
calculated model performance (kappa value) using just the 
instances from that subpopulation. For example, in Study 1, 
15 participants wore glasses, so the model is then evaluated 
on instances only from those 15 participants.

Results of the slicing analysis are shown in Table 6. For 
both correctness and TUT, the results were relatively robust 
to wearing glasses or not, and to lighting changes. We did, 
however, notice a slight decrease in performance for indi-
viduals who self-identified as having a neurological condi-
tion, amounting to a 7% reduction in accurately predicting 
correctness and a 5% reduction for TUT.

The results for correctness were also relatively robust to 
differences in race/ethnicity, despite some variation across 
different racial categories. The overall kappa was 0.57, with 
the kappas for Asian/Pacific Islander, Black/African Ameri-
can, and Hispanic/Latinx in a comparable range of 0.56 to 
0.59. There was a slight drop (~ 6%) for Other-identifying 
participants at 0.51. There was a more substantial drop for 
the group of participants who identified as Native Ameri-
can (kappa = 0.26); however, this group contained only 
two students and thus should be interpreted with caution 
and followed up with future studies using larger samples 
(see Future work). Overall, we interpret these results to be 
encouraging, providing the first (to our knowledge) glimpse 
into how gaze-based detectors of TUT/Comprehension may 
differ across these moderators.

This relative stability in correct inference predic-
tion implies that the cause of the variation in detector 

Table 6  Slicing analysis by different moderators

Moderator Value Participants (N) Correct Inference kappa TUT kappa

All Study 1 Study 2 All Study 1 Study 2 All Study 1 Study 2

All Participants 278 105 173 0.57 0.55 0.58 0.15 0.19 0.12
Glasses Wore glasses 66 15 51 0.57 0.61 0.56 0.15 0.17 0.12

Did not wear glasses 212 90 122 0.58 0.57 0.58 0.15 0.20 0.09
Lighting Well Lit 186 63 123 0.56 0.54 0.56 0.13 0.17 0.11

Dimly Lit 84 38 46 0.60 0.58 0.61 0.17 0.15 0.09
Lights Off 8 4 4 0.56 0.49 0.50 – 0.20 0.02 – 0.04

Neurological Condition Yes 19 14 5 0.51 0.51 0.43 0.10 0.19 0.10
No 259 91 168 0.58 0.58 0.58 0.15 0.09 0.12

Race/Ethnicity White/Caucasian 125 88 37 0.59 0.56 0.67 0.17 0.19 0.18
Latinx/Hispanic 49 7 42 0.58 0.63 0.58 0.12 0.08 0.12
Asian/Pacific Islander 44 6 38 0.56 0.49 0.61 0.12 0.16 0.11
Black/African American 42 3 39 0.56 0.71 0.51 0.04 0.15 0.02
Native American 2 0 2 0.26 0.14 – 0.20 – 0.20
Other 16 1 15 0.51 0.00 0.55 0.22 0.11 0.23
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performance may not be caused entirely by the quality of 
the eye tracking, or a potential bias in the tracking. In addi-
tion, the variation may result from noise in the self-reports 
and how participants responded (e.g., how comfortable par-
ticipants are reporting being off-task), patterns in the sim-
ple gaze features used or the algorithm, or other factors. 
Identifying these factors will require further study, but it is 
nevertheless an important result to know that such variability 
in detection is occurring, which is an important step towards 
fixing it (Baker & Hawn, in press).

In contrast, TUT prediction was less stable across race/
ethnicity. There was a reduction in performance for TUT 
detection for participants that identified as Black/Afri-
can American (kappa = 0.04) versus those that identified 
as White (kappa = 0.17). This variation is the difference 
between a functioning (albeit modest) detector and chance 
prediction levels, suggesting that some aspect of the data 
or detector was different for these participants (see Dis-
cussion). However, the same reduction was not observed 
when predicting correct inferences for the Black-identifying 
participants (kappa = 0.57 for all students, 0.59 for White 
participants versus 0.56 for Black participants in the model 
trained on all data). Though there is still variation for pre-
dicting correct inferences across race/ethnicity, especially 
when training on just study 2 data (kappa = 0.67 for White 
students and 0.51 for Black students), the relative change is 
lower, and the resulting detector would still be considered 
effective (as opposed to chance level for TUT).

In general, these results suggest that this tracking meth-
odology and the detection that it facilitates are acceptably 
robust for the task of correctness prediction. However, it is 
necessary to conduct additional work before including TUT 
prediction, especially with the variability across race/eth-
nicities. For example, our analyses were underpowered for 
Native American students (N = 2), corresponding to an inef-
fective model. Additional analysis (perhaps less quantitative) 
is required before we may draw any general conclusions. 
If pursuing a more robust predictive model from the data 
alone, additional training data would be required before the 
models can be adequately tested on this population. Thus, 
although these analyses are important to conduct, they are 
not intended to be conclusive or prescriptive for who and 
when webcam-based eye tracking will work.

General discussion

The idea that eye gaze behaviors provide a window into the 
mind has led to important research discoveries over many dec-
ades (Huey, 1908; Rayner, 1998; Rayner, Chace et al., 2006). 
However, the high cost of eye-trackers has severely limited the 
scalability of existing approaches to detect cognitive states in 
real time. Here we attempt to address this issue by integrating 

WebGazer into an online educational task in order to build 
models of TUT and comprehension during reading, with 
the goal of showing a proof-of-concept method for scalable 
eye-tracking.

Main findings

This work demonstrates the feasibility of using webcams 
for modeling internal states during learning. Though this 
data stream is of a lower fidelity than a typical PCCR eye-
tracker (e.g., measured at 30 Hz rather than > 60 Hz, with 
reduced precision and accuracy), this work demonstrates 
that with appropriate calibration, WebGazer can be suffi-
cient in most cases for user modeling. Despite having only 
a single calibration for a 40-min task, our models still made 
predictions at above chance levels. Our models also per-
formed better (in terms of kappa values for the combined 
dataset, as well as for each dataset individually) than a model 
trained on participant response time alone, demonstrating 
that using webcams for this task was a useful augmentation. 
Moreover, both TUT and comprehension models performed 
comparably (as measured by kappa values) to prior work 
using research-grade equipment, for most groups of learn-
ers and tasks. This result is particularly encouraging given 
the poorer quality of our gaze data, which nonetheless was 
sufficient to model users at above chance rates and leverage 
this cheaper, more accessible technology to provide cogni-
tive insights.

Throughout this work, we have used a chance baseline as 
a comparison point, with models performing above chance 
being considered successful. By this metric, our findings 
are roughly comparable to others using research-grade eye-
tracking (Bixler et al., 2015, whose highest reported kappa 
value for gaze was 0.15) or EEG signals (Dong et al., 2021, 
whose MCC was .206). No such comparable values exist 
for comprehension, but given that we outperform the con-
ventional rates for TUT, we speculate that webcam-based 
eye-tracking may also be suitable for real-world applica-
tions. In general, the limited degree to which our model is 
better than chance suggests that if used for intervention, it 
should be applied in “fail-soft” interventions (see Discus-
sion below). More generally, more nuanced definitions of 
“successful” will require taking into account the intended 
application and risk

Our slicing analyses indicated that our detectors were 
largely robust to individual differences of race/ethnicity 
(with one key exception; see discussion below), and whether 
participants wore eyeglasses, as well as conditional differ-
ences such as lighting. We also found that models trained 
were generalizable between the two datasets, though did 
experience some performance degradation in both directions 
(e.g., train Study 1, test on Study 2, and train Study 2, test on 
Study 1 both saw a drop off in performance).
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The one notable evidence of variability in our slicing 
analysis was the drop in performance for TUT detection 
across race/ethnicity, with lower performance for partici-
pants who identified as Black/African American or Native 
American. This reduction in performance could be for many 
reasons, such as differences in the self-reporting of TUT or 
in the simple eye-movement features. It seems unlikely to be 
a result of egregious computer-vision issues with the track-
ing, such as contrast issues or biases in the facial detection, 
given that the gaze tracking was sufficient for successful 
for correct inference prediction. However, more analyses 
are needed to rule out more minor differences in how the 
eyes are tracked. Future research is also needed to determine 
why we observed such differences, as well as how webcam-
based eye-tracking and TUT detection can be improved for 
all participants. Given the broad, robust nature of the track-
ing for correct inference prediction, our work provides some 
initial evidence of feasibility for the webcam-based method 
in general. More evaluation is needed to determine which 
tasks this approach can be used for, without concerns of bias.

This caveat notwithstanding, our work serves as a proof-
of-concept for a future real-time detector that leverages 
webcam data. All data used in the models came from inter-
actions prior to the prediction point and could be gathered 
in real-time (either the previous page of reading or the pre-
vious three pages). Similarly, the model accuracy is within 
the ranges of detectors previously used in the literature for 
real-time intervention. This work adds to a growing body 
of research examining the feasibility of webcam-based eye 
tracking and adds further credence to their use a proxy for 
PCCR gaze tracking. Furthermore, it offers potential to scale 
up decades of research examining links between comprehen-
sion, TUT, and eye gaze, taking these experiments into new, 
ecologically valid environments.

Applications

It is perhaps easier to start with how this approach should 
not be used. Sensor technologies such as webcams hold 
great potential but also pose great risk. This method should 
not be used to monitor students (or anyone) without their 
permission, or without transparency as to how their data is 
being collected/stored. Any future application should clearly 
inform the user of what data is being collected and how it 
is being used.

Assuming careful consideration of privacy and transpar-
ency, these methods have many possible applications in soft-
ware development. Eye tracking has consistently been used 
to identify interaction patterns and improve software devel-
opment (Jacob, 1995; Kukkonen, 2005). Being able to moni-
tor constructs such as attention in a cheap and scalable way 
can improve this process and help developers understand 

when materials or software is not engaging the audience 
(Toreini et al., 2020).

More specific to educational contexts, our work sets the 
foundation for improving the scalability of modeling tech-
niques with the end goal of improving research methods, 
learning technologies, and student experiences. For exam-
ple, our results show that webcam-based detectors provide 
more accurate detection than response time detector and are 
thus likely to be more useful for real-time intervention tech-
niques that correct deficits “in the moment.” A student who 
is unlikely to answer a comprehension question correctly 
could be advised to read the text again before attempting 
the question or be given hints about which parts of the story 
are the most critical.

It is also important to consider that any intervention must 
rely on detection, which is inherently imperfect, especially in 
the case of TUT detection. False alarms (predicting someone 
is off-task when they are not) and misses (missing an instance 
of TUT) are both possible and must be accounted for in any 
application. In our view, detection does not need to be perfect 
to be useful. Indeed, prior work has used imperfect detection 
to trigger meaningful interventions for TUT, using a proba-
bilistic approach (e.g., if the likelihood of TUT is 70%, then 
there is a 70% chance of an intervention) (Mills et al., 2020). 
Any interventions should also be designed to “fail-soft” 
in that there are no harmful effects to learning if delivered 
incorrectly. For example, an intervention may ask students to 
provide a self-explanation of what they had just read if they 
have been detected to be off-task. If a student is not off-task, 
this will reinforce what they already know without damaging 
the experience too greatly. A student that is off-task will be 
prompted to realize that they are missing details and go back.

The comprehension detector, has higher precision than 
recall for students who have not understood the text, mean-
ing that a miss (predicting comprehension when the student 
has not understood the text) is more likely than a false posi-
tive (predicting a student has not understood the text when 
they have). In this case, the confidence in an individual pre-
diction can be high, which is useful for most applications 
and reduces the need for a “fail-soft” approach, but more 
refinement is needed to reduce the number of misses in the 
model, to guarantee that detector is supporting all students.

Given these implementation considerations, the detectors 
presented in this work provide proof-of-concept for poten-
tial real-time integration using webcam eye-tracking solu-
tions. Though there are known inaccuracies, these inaccura-
cies can, in principle, be accounted for to provide valuable 
real-time information and adaptation. Though we cannot 
directly measure the inaccuracies in this work due to not 
having an appropriate comparison set, previous work with 
WebGazer has already been evaluated to have error rates 
of up to 4 degrees. It is thus encouraging that despite this, 
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our anecdotal evaluation shows that gaze is adaptive to the 
stimuli, and falls on expected AOIs in many cases.

Limitations and future work

There were several limitations of this work. Firstly, our 
study was designed to test low-cost eye tracking, by using 
the webcams included in devices. However, webcams have 
limited resolution and accuracy compared to research-grade 
eye-trackers. These limitations govern what can be derived 
from this data and the subsequent strength of any conclu-
sions we can draw relative to the broader eye-tracking lit-
erature. Research-grade eye tracking will remain the gold 
standard for gaze-based research, even though webcam-
based approaches have great promise in the real world. We 
have shown that despite low-quality tracking, we are able to 
model complex constructs in a manner that is scalable and 
easy to implement.

Second, though we have taken steps to improve ecologi-
cal validity through webcam use, future work should focus 
on using other tasks. Given that our results likely depend 
strongly on exactly how we presented our stimuli, future 
work should consider alternate presentations of text, or 
alternate tasks. For example, the same approach could be 
implemented but using longer passages and with page-by-
page reading. Although many psychological experiments 
routinely use word-by-word or sentence-by-sentence para-
digms when studying reading comprehension, it is impor-
tant to test the boundary conditions of the webcam-based 
eye-tracker, particularly as areas of interest become more 
difficult to outline (e.g., small, single-spaced typeface). This 
limitation also extends to our high baseline comprehension 
accuracy rate (average accuracy was 88% correct), resulting 
in unbalanced class labels. Given this imbalance, it is not 
surprising that the chance classifier performs much better 
for correctness than for incorrectness. Future work may also 
consider alternative forms of assessing comprehension.

We also note the better performance of Local versus 
Global features. This finding implies that for correctness, 
where a participant is looking is more important than their 
more general gaze patterns. This result makes sense given 
the layout of the stimuli, with the three answers located at 
different locations on the screen. This result also testifies 
to the general accuracy of the eye tracking we used; were 
it highly inaccurate, it is unlikely the local features would 
have been as effective for prediction. However, other formats 
of stimuli/material presentation would be helpful in future 
work. Similarly, we should consider more complex feature 
sets and deep learning approaches as additional data is col-
lected. As is often the case with human participant data, 
the current dataset is not large enough for effective deep 
learning, however the scalability of this approach presents 

the opportunity to collect vast datasets. Now that the initial 
feasibility has been shown, future work should consider col-
lecting a larger dataset that enable more complex data min-
ing and machine learning.

Future work should also consider a more in-depth fea-
ture-engineering process, with additional global and local 
features. The features included in this work, though theo-
retically relevant, provide a baseline for future gaze-feature 
development. Other features may include more detailed 
logging of reading regressions, for example, or word-level 
features considering how long a participant spends on each 
word of a sentence. Some features may also require that 
tracking accuracy and/or resolution is first improved before 
they can be calculated.

Though local features provided valuable predictive infor-
mation for comprehension and TUT, we have not explored 
the mechanistic relationship between eye gaze and these 
constructs in this work. We argue that webcam-based gaze 
tracking is perhaps not suited to this kind of fine-grained 
analysis of reading behaviors, but we are encouraged that 
the data-driven models presented here are able to identify 
the cognitive events considered. Future work could consider 
how gaze mechanisms identified with research-grade track-
ing systems translate to this more accessible tracking option, 
which could help determine if and how such mechanisms 
can still be detected using webcam-based systems.

This work is further limited by our use of thought probes. 
Thought probes require users to be mindful of their unrelated 
thoughts and respond honestly. Although this methodology 
has been previously validated (Franklin et al., 2013; Ran-
dall et al., 2014), it is still limited due to the reliance on 
self-reports. Unfortunately, there is no clear alternative to 
track a highly internal state like TUT outside of measur-
ing brain activity directly, which is also limited in many 
respects. Indeed, this too is part of the motivation for auto-
mated detectors. Future work should focus on validating our 
detectors so that thought probes are no longer necessary for 
measuring TUT, though fully automated TUT detections 
may well be a long way in the future.

Conclusions

In sum, we provide evidence for a scalable solution for 
detecting attention and comprehension using only stock web 
cameras. Although there is still much room for improve-
ment, the possibility to reach more individuals in more real-
world settings –particularly those who are historically under-
represented – creates important opportunities for improving 
learning supports, and we hope to continue development 
along these lines.
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