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Abstract

Digital simulation enables a wide variety of research and ap-
plications underlying the study of artificial life. In evolu-
tionary robotics applications, the focus is often on maximiz-
ing performance of an animat for a specific task. Analyz-
ing evolved behaviors can be challenging, however, given the
complex coupling of morphology and brain. In this paper,
we introduce a simulation environment built to investigate
animats capable of smoothly transitioning between operating
modes (e.g., from cautious to aggressive or from one physi-
cal form to another). The simulator provides functionality for
logging sensory information as well as animat state enabling
a deep analysis. Although more abstract than soft-body or
rigid-body physics engines, it is lightweight and efficient, al-
lowing for a high number of simulations in a small amount
of time. The simulation supplements other more complex
physics-based environments providing for greater inspection
of sensor information and animat behavior. Furthermore, it
is designed to provide an extensible test bed beyond just gait
transitions to assess new artificial intelligence and evolution-
ary algorithms and more importantly the combination of these
techniques.

Introduction
Simulation environments enable testing and verification of
new robotic systems and adaptive controller designs (6; 12).
However, simulation and animat complexity can make it
challenging to analyze new controller behaviors as well as to
assess algorithm characteristics (10). Interactions between
morphology, controller, and task complexity make it chal-
lenging to isolate what aspects of brain, body, or problem
formulation might contribute to the effectiveness of a solu-
tion (11). In addition, simulators do not always have full
monitoring capabilities, which often necessitates a custom
solution to help elucidate “why” a controller makes a deci-
sion. Even high fidelity simulators more often than not fail
to produce behaviors that cross the reality gap (7; 8).

In this paper, we present a simulator for bench-marking
artificial intelligence and evolutionary algorithms against an
animat in a three dimensional voxelized world. The simula-
tor, shown in Figure 1, was first and foremost designed to be
as simple as possible while requiring morphological trans-
formations as motivated by earlier controller design in (6).

Figure 1: A view of the tunnel configuration of a simula-
tion. The animat (blue) must navigate a series of obstacles
by changing its shape to fit through gaps of varying sizes in
zero gravity.

Specifically, building testable, robust controllers capable of
transitioning between different gaits is an outstanding chal-
lenge that inspired this simulator. From a software perspec-
tive, walking and running are different modes of operation,
and designing algorithms to identify modes and transition
points is an ongoing challenge. Here, we focus on a re-
lated problem, the transition between different morphologi-
cal states as a proxy for operating modes. The simulator sim-
plifies the mode switching problem from a legged robotics
domain to a voxel-based tunnel world. Movements are ap-
plied to the animat without the added complexity that joint
actuation may introduce as observed in many robotics appli-
cations (5; 9; 14). Second, sensors (e.g., cameras or an array
of distance sensors) allowing an animat to perceive its envi-
ronment are implemented with full logging capability built-
in, facilitating later analysis. The simplified world makes it
easier to train vision-based deep learning algorithms (e.g.,
deep reinforcement learning and convolutional neural net-
works (Tai et al.)) and compare results with evolutionary
algorithm approaches (e.g., ANNs and GPs). Finally, ac-
knowledging the role morphology plays in robotics (4; 2; 1),
the animat’s morphology can change shape facilitating con-
troller exploration in the face of changing morphology.
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Figure 2: (a) The 3D-maze navigation task requires that the animat to locate a gap to move through. (b) With an appropriate
shape and no sensor collisions the animat navigates through a gap. (c) Wide, short gaps require a morphological change directed
by the animat’s controller to be short and wide. (d) The animat at its widest configuration to navigate a low, short gap.

Simulation Environment
The simulator is voxel-based, with a single voxel (1x1x1)
representing the smallest possible object. Animats and ob-
stacles are cuboids comprising one or more voxels forming
a composite object. Each possible voxel for an object has
a three-dimensional coordinate associated with it. The sim-
ulation proceeds in a discrete, step-wise manner with du-
ration of a simulation measured in terms of the number of
elapsed simulation steps. Collision checking is performed
between steps of the simulation with two composite objects
prohibited from inhabiting the same voxel simultaneously.
If a movement would result in two objects occupying the
same voxel, the movement is denied. The environment is
also zero-gravity.

Example Task: Obstacle Navigation Figure 2 shows the
animat in different morphological configurations over the
course of an obstacle navigation task. Here, an animat with
five possible shapes is tasked with navigating end-to-end
through a tunnel populated with obstacles. A series of obsta-
cles with randomly generated gaps is placed in front of the
animat. Controllers are challenged to locate gaps, reconfig-
ure the robot, and then navigate through to the next space.

The pictured animat has five possible shape configura-
tions: one block tall by nine blocks wide, two by five, three
by three, five by two, or nine by one. The animat has five
forward facing distance sensors; one in the center and one
on each corner voxel. The animat can move forward, back-
ward, left, right, up, and down, and it can also choose to not
move; the animat can also widen or narrow its body, which
changes its width and height. If a widen or narrow com-
mand is given when the animat is already at the respective
shape extent, a no movement operation is executed instead.
The relatively simple control space is ideal for comparing,
for example, a genetic program to a reinforcement learning
policy.

Current Status and Future Improvements The software
is currently built around the end-to-end navigation task. It

is available under an open-source license at https://
github.com/jaredmoore/MorphWorld. We plan
several improvements, such as integrating the simulator with
other initiatives as well as increasing the capabilities of the
simulator itself. First, we are developing an interface with
the OpenAI platform (3), allowing the simulator to read-
ily be used with many existing algorithm implementations.
Second, vision and lidar will be added as sensors enhancing
the current sensor suite available to developers. Finally, we
will implement interactions between animat and objects in-
cluding rudimentary grasping and dynamically moving ob-
stacles.
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