
Just Keep Swimming:
Accounting for Uncertainty in Self-Modeling Aquatic Robots

Matthew J. Rose, Anthony J. Clark, Jared M. Moore and Philip K. McKinley1

Abstract.
A robust robotic system should be able to overcome unforeseen

conditions, including physical damage and component failure occur-
ring after deployment. A self-modeling system maintains an internal
image of itself, which can be updated to reflect incurred damage. The
robot can use this model to derive (or evolve) new behaviors such as
gaits that account for the damage. In this paper we describe an ap-
proach to self-modeling for aquatic robots. The aquatic environment
presents unique challenges to the self-modeling process, including
the inherent uncertainty in the robot’s orientation and configuration.
We propose and evaluate two approaches to automatically infer miss-
ing contextual information, which otherwise complicates the task of
developing an accurate model. We demonstrate the effectiveness of
these methods on a particular aquatic robot intended for remote sens-
ing.

1 Introduction
Increasingly, robotic systems are required to be resilient to adverse
conditions that occur after deployment. A particularly challenging
problem is how to overcome situations where the structure or func-
tionality of the robot is fundamentally changed due to physical dam-
age or mechanical/electronic failure. While pre-programmed recov-
ery modes offer a computationally efficient means of addressing
common problems during system operation, they are highly depen-
dent on the ability of an expert designer to anticipate failure cases.
On the other hand, if the robot has a means to automatically discover
changes to itself, it might be able to generate a new compensatory
behavior even when faced with unanticipated scenarios.

One approach to achieving such run-time adaptability is self-
modeling, where the system maintains an internal “mental image”
of itself [3]. Current science suggests that animals maintain a mental
predictive model of themselves and use this model to plan appropri-
ate behaviors [29]. In the case of a robot, if the system has an accurate
simulation model of its own morphology, including sensors and actu-
ators, it can derive new behaviors dynamically using the model rather
than the physical system. For example, consider a situation with an
aquatic robot, where the motor actuating a pectoral fin fails and stops
working entirely. Executing pre-programmed control sequences for
specific gaits is unlikely to produce expected movements. On the
other hand, if the system could dynamically produce a new model
of itself, then it might discover that one of its flippers is seized and
derive a new gait to compensate for this limitation.

The search capability of computational evolution has been shown
to be effective in discovering both models and corresponding behav-

1 Department of Computer Science and Engineering, Michigan State Univer-
sity, East Lansing, Michigan, USA, Contact email: mckinley@cse.msu.edu

iors for robots. Bongard and Lipson [20] introduced the Estimation-
Exploration Algorithm (EEA), a general purpose algorithm for re-
verse engineering complex, non-linear systems. At its core, the EEA
is a co-evolutionary process that alternates between gaining infor-
mation about the target system (exploration) and integrating that in-
formation into its model hypothesis (estimation). By evolving mul-
tiple model hypotheses in parallel and selecting the most appropri-
ate hypothesis for testing, this approach greatly reduces the number
of physical tests needed, relative to a traditional “generate and test”
methodology [22]. Bongard and Lipson demonstrated the use of EEA
to automatically diagnose failures in terrestrial robots (quadrupeds
and hexapods) and generate compensatory behaviors without human
intervention [7].

In this paper, we adopt the general EEA approach but extend it to
address uncertainties associated with a specific aquatic robot, shown
in Figure 1. The robot has a caudal fin and two pectoral flippers.
Although we have previously fabricated this robot and evaluated it
in an aquatic testbed, in the study described here we investigate the
self-modeling process using only a simulated robot modeled after
the physical counterpart. Applying the proposed process to online
evolution in physical robots is part of our future research.

(a) (b)

(c) (d) (e)

Figure 1. Modeling and fabrication of an aquatic robot [24]: (a) simula-
tion model in Open Dynamics Engine (ODE); (b) corresponding SolidWorks
model for fabricating prototype; (c) 3D-printed passive components of proto-
type; (d) integration of electronic components and battery into the prototype;
(e) assembled, painted and waterproofed prototype in an elliptical flow tank.
The main body of the physical prototype is 13cm long and 8cm in diameter,
the pectoral flippers are 8cm long and 2cm wide, and the tail fin is 7 cm long,
3 cm tall, and 2 cm thick.

A particularly difficult problem arises from the uncertainty sur-
rounding initial orientations and configurations of the robot during
the self-modeling process. Whereas with terrestrial robots studied in
previous works the algorithm could exploit known starting positions
in order to evolve accurate models, the dynamics of the aquatic en-
vironment complicates this task. For example, the response of our
target robot to a given set of servo motor commands depends on the
initial position of its flippers. However, due to hardware limitations
specific to this device, the initial positions of the flippers cannot be
determined from the robot. To address this issue, we propose and
evaluate two inference mechanisms (In-Band Inference and Out-Of-
Band Inference) that reduce the uncertainty regarding contextual in-
formation. Here, we apply these techniques to help determine the
starting positions of the aquatic robot’s flippers and fin, however,
the approach is generally applicable to other uncertain factors that
affect modeling performance. The effectiveness of this approach is
demonstrated on a simulated target robot with a damaged pectoral
fin. Specifically, the modified EEA produces a model approximating
the damaged system, with which a new gait is evolved.

2 Background and Related Work

Although the focus of our research lies in the field of robotics, self-
modeling is a general concept and has been applied to a wide variety
of systems. Much of this research has been conducted in the context
of autonomic, or self-*, systems [17, 23], which are designed to be
capable of self-management and self-healing, among other functions.
In particular, computational reflection [21] has provided a founda-
tion for extensive work on self-modeling software, including adap-
tive middleware [4] and formal models for developing adaptive soft-
ware [30]. More recently, the search capability of evolutionary com-
putation has been wielded to help software find effective and safe
paths to reconfiguration [26] and address uncertainty [11]. In soft-
ware systems, self-modeling typically addresses software structure,
whereas in robotics, it is often concerned with physical structure and
mechanical functionality of the system. Such is also the case with
many biological organisms.

Zoologists recognize the importance of studying the behaviors of
an organism in the context of its Umwelt [13]. This concept refers
to a coevolved linkage between perception and action, whereby the
complexity of an animal’s control systems is governed by the the ca-
pabilities of its physical body, the behavioral problems it faces, and
the environment in which it operates. The Umwelt concept is also
relevant to engineered robotic systems, where embedded computing
systems need to interpret sensed information and respond accord-
ingly through robot actuators. Indeed, the adaptability and robustness
exhibited by natural organisms has led to many bio-inspired design
approaches. In biomimetic methods, a structure or behavior found in
nature is replicated in the artificial system. However, simply codify-
ing animal behavior in a robotic controller does not account for, or
exploit, the vast differences between engineered systems and natu-
ral organisms. A complementary bio-inspired approach is to harness
the process that produced robust systems in nature: evolution. Evolu-
tionary computation (EC) methods [12] codify the basic principles of
genetic evolution in computer software. EC methods are particularly
effective at addressing problems involving large, multidimensional
search spaces. The most well-known EC method is the genetic algo-
rithm (GA) [15], an iterative search technique in which the individ-
uals of a population encode candidate solutions to an optimization
problem. GAs and related EC methods have proven to be effective in
a wide variety of science and engineering domains, rivaling and even

surpassing human designers [1].
In addition to solving optimization problems, some EC approaches

produce software for controlling physical devices such as robots. For
example, neuroevolution [28] is a machine learning method in which
GAs are used to train artificial neural networks (ANNs), which in
turn can control physical systems such as robots. ANNs are particu-
larly attractive for controllers because they have low computational
cost, and their inputs and outputs can correspond directly to sensors
and actuators, respectively. In evolutionary robotics [19], an artifi-
cial genome encodes a robot’s control system and possibly its mor-
phology. The control program is downloaded into a real or simulated
robot, which is then let “loose” in an environment. The fitness of the
system is evaluated with respect to performing tasks. The most fit
individuals in the population are allowed to reproduce, with random
mutations and recombination, to form the next generation on which
this cycle is repeated until a satisfactory solution evolves [14]. Over
the past 15 years, extensive progress has been made in several aspects
of evolutionary robotics, including evolution of neurocontrollers for
walking robots, finless rockets, and behaviors such as foraging and
game playing.

An issue for a simulation-developed solution is how well it trans-
fers into a physical robot. The so-called “reality-gap” arises when
solutions that work well in a simulated environment face issues in
a physical environment that were either unforeseen or incorrectly
modeled [10, 16]. Approaches to this problem include evolving the
simulator in conjunction with a robot [9] and directly rewarding so-
lutions for performing similarly in reality and simulation [18]. How-
ever, even if the deployed robot initially behaves as in simulation,
over its lifetime it is likely to experience hardware decay, software
bugs, and even physical damage. Self-modeling approaches provide
an avenue for robots to continuously adapt to the ever changing op-
erational state and environmental conditions faced in the real world.

Bongard and Lipson proposed the EEA in part to enable remote
robots to automatically diagnose failures and generate compensatory
behaviors without intervention [7]. The algorithm’s ability to auto-
matically derive a damage hypothesis (diagnosis) and then evolve
and effective behavior that maintains most of the intended functional-
ity was demonstrated for simulated quadrupedal and hexapod robots.
The extensibility of this algorithm was later demonstrated with the
automated inference of gene regulatory networks [8]. In this paper,
we further extend the EEA method to deal with operational uncer-
tainty. Specifically, we alter the EEA to include an inference com-
ponent from which the system extrapolates its own starting orien-
tation. This capability is particularly important in aquatic environ-
ments, where the robot’s orientation may be highly dynamic.

When performing a damage diagnosis on a real-world system, the
algorithm must also account for its environment, a factor that is be-
yond the system’s control. Fundamental work was completed in this
area by Bongard and Lipson in [5], an extension to the work in [7]. In
this approach, the algorithm is extended to not only derive a damage
diagnosis for itself, but also to make basic estimates of its environ-
ment. This method, however, applies only to static environments. The
approach presented in this paper can infer unknown attributes about
the system being modeled or its environment on a per-trial basis, re-
moving the requirement that the environment be static.

3 Methods

In this section, we describe the simulation environment, evolutionary
computation methods, basic self-modeling algorithm, and the two
proposed methods of accounting for uncertainty.

3.1 The Aquatic Robot

As shown in Figure 1, the aquatic robot targeted in this study com-
prises a capsule-shaped main body, two pectoral flippers, and a sin-
gle caudal fin. The main body of the physical robot contains an Ar-
duino microcontroller board, two lithium polymer batteries, three
servo motors, and a 6-axis inertial measurement unit (IMU). The
IMU includes an integrated gyroscope and accelerometer, enabling
the robot to compute its current position, orientation and velocity in
three-dimensional space. The robot is designed to be configurable, in
that plastic sleeves enable 3D-printed flippers and fins with different
characteristics (size, shape, flexibility) to be swapped in and out for
different experiments. The servo motors powering the flippers are a
continuous rotation type that offer only a variable speed in either di-
rection with no position feedback, a feature typical of servo motors
of this size. The lack of position information complicates the self-
modeling process, since the behavior of the robot is highly coupled
to its initial configuration. This inherent uncertainty in the robot’s
initial configuration is the basis of and motivation for this study.

In the future we plan to integrate and test self-modeling algorithms
using the physical robot. However, in this study we explore self-
modeling algorithms using only a simulated version of the robot.
This approach enables us to efficiently explore novel approaches
to dealing with uncertainty as part of the self-modeling process.
Promising techniques can later be evaluated through experiments in
Evolution Park, a testbed for research in autonomous systems and
evolutionary robotics located at our institution; see Figure 2.

(a) (b)

(c) (d)

Figure 2. Components of the Evolution Park experimental environment: (a)
swarm of commercial terrestrial microrobots and interactive simulation clus-
ter; (b) Connex 350 multi-material 3D printer for fabricating robotic compo-
nents; (c) 4500-gallon custom-built tank for aquatic robot experiments; (d)
elliptical flow tank for studying behaviors such as station keeping. Additional
details are available at http://www.cse.msu.edu/evopark.

We simulated the robot using the Open Dynamics Engine
(ODE) [25], an open-source software package for simulating rigid-
body dynamics. We have previously developed a computationally ef-
ficient fluid dynamics model for ODE, enabling us to apply this plat-
form to the investigation of aquatic robots [24]. The simulated robot
approximates its physical counterpart in form and also offers similar
sensing modalities. Specifically, a simulated IMU provides inertial
data for use by the robot controller and the self-modeling algorithm.

In this study, the controller is an evolved artificial neural network
(ANN), described later, but other types of controllers could be used.
As with the physical robot, the position of the flippers is not directly
available and must be inferred. Although the physical robot is de-
signed to accommodate flippers of varying material composition and
flexibility [24], in this initial study the flippers of the simulated robot
are rigid.

For the purpose of the self-modeling algorithm, we have defined a
standard way of controlling the simulated aquatic robot. An atomic
control command consists of a three-tuple of servo motor speeds,
one for each of the two pectoral flippers and one for the caudal fin.
The pectoral flippers are allowed to operate with an angular veloc-
ity of [�0.5, 0.5] revolutions per second, and the caudal fin has a
range of [0.0, 1.0] Hz oscillation within a [�30, 30] degree sweep.
When given a command, the simulation sets its servo motors to the
commanded angular velocities and simulates itself for a fixed (but
configurable) amount of time. IMU sensor readings for pitch, roll,
and yaw are recorded at each step of simulation and placed into a
log of samples. Once the simulation completes, the list of sensor
samples is aggregated into a behavior summary, which is returned
as output of the simulation. In preliminary studies we experimented
with different methods of aggregating these data, in an attempt to
differentiate responses of the robot. Methods we explored included
the mean angular velocity in each axis and the root mean squared an-
gular velocity in each axis. However, we found the Discrete Fourier
Transform (DFT) to be most effective in capturing differences among
robot movements, and we used it as the behavior summary for all the
experiments presented in this paper.

In addition to the control scheme, the simulation is also parame-
terized to allow for changes in the robot morphology. Specifically,
the dimensions of each of the three flippers can be altered. Since the
ODE engine is unitless, only the relative dimensions are of interest.
The pectoral flippers can be sized in the range [0, 1], [0, 2], [0, .5] for
(x, y, z), respectively, where the x dimension is width of the robot,
y is the length along the robot’s capsule, and z is the vertical di-
mension. The caudal fin can be sized in the range [0, .5], [0, 2], [0, 1]
for (x, y, z), respectively. The range of potential flipper sizes is in-
tentionally larger than the physical robot’s flippers to allow the al-
gorithm to accommodate changes in morphology such as damage,
wear, or the entaglement of a flipper with foreign objects.

3.2 Self-Modeling Algorithm

As noted earlier, we adopt the EEA [6] to produce candidate mod-
els of the target system (in this case a simulated robot). The EEA is
a general purpose algorithm for reverse engineering complex, non-
linear systems. As depicted in Figure 3, the EEA is a co-evolutionary
process that alternates between gaining information about the target
system (exploration) and integrating that information into its model
hypothesis (estimation). The combination of an exploration phase
and an estimation phase is referred to as a round. These two phases
are iterated until a maximum number of interactions with the target
system have occurred, or it is determined that the current model hy-
pothesis accurately represents the target system. Determination of a
good stopping criteria is a complicated subject in its own right. For
this study we have simply allowed the modeling process to run until
a computation time limit has been exceeded.

Exploration Phase. The exploration phase is responsible for col-
lecting behavioral information from the target system for use in the
estimation phase. Specifically, the algorithm attempts to identify an

Figure 3. Basic operation of the Estimation-Exploration Algorithm [6].

action (in our case a particular movement of the robot’s flippers) that
provides maximal information regarding the current hypotheses of
the robot morphology. A genetic algorithm is used to search for such
an action; a population of individuals, each an encoding of a can-
didate action, executes for a predetermined number of generations.
The fitness of a candidate action is based on the amount of disagree-
ment it generates among the current model hypotheses, as discussed
below. The action with the highest fitness in the final generation is se-
lected and applied to the target system (in our case a simulated robot,
but in the field a physical robot). The response from the target is col-
lected from the system’s sensors and recorded, along with the action
that generated it (collectively known as an experiment), for use in the
estimation phase. This guided selection of actions, that is, applying
evolution to simulated robots until the final step, has been shown to
reduce the number of physical tests on the target system by several
orders of magnitude [7].

For our study, an action is encoded as a binary string of 18 bits: 6
bits to encode each of the pectoral servo speeds, and the remaining
6 bits for the caudal fin frequency. The fitness of a potential action
is based on the diversity of behaviors it elicits from the set of candi-
date morphology models. That is, an action that produces a similar
response in most candidate models receives a low fitness score, while
one that produces markedly different responses receives a higher fit-
ness. Formally, the fitness of action a is defined as

ACT FIT (a) =
M�1X

i=1

MX

j=i+1

[1 � sim(Bi,a ,Bj ,a)]÷

M

2

!
, (1)

where M is the number of candidate models, Bi,a is the behavior
when action a is applied to model i, and sim is the similarity mea-

sure between two behaviors. As noted earlier, after exploring al-
ternatives we implemented a DFT-based definition of sim(), specif-
ically, the similarity of two behaviors B and B

0 is defined as:

sim(B,B

0) =
1
f

fX

k=1

1� |ck(B)� ck(B
0)|

MAX
, (2)

where f is the total number of discrete frequencies in the series,
ck(B) is the kth coefficient for behaviour B, and MAX is a pre-
determined maximum coefficient value (in our system, MAX =
100).

Estimation Phase. The estimation phase is responsible for refining
the hypothesis of the robot’s morphology. To this end, it generates
a set of candidate hypotheses that best explain the experiments per-
formed in prior exploration phases. As in the exploration phase, a ge-
netic algorithm is used for this search process, with candidate models
encoded as binary strings. In this study, each model encoding com-
prises two sets of pectoral fin dimensions (15 bits each) and one set
of caudal fin dimensions (15 bits), for a total of 45 bits. These param-
eters produce a discretized set of potential flipper/fin dimensions, as
shown in Figure 4. For example, the width, length and thickness of
each pectoral flipper are represented by 5 bits in the x dimension, 6
bits in the y dimension, and 4 bits in the z dimension. For each exper-
iment found during the exploration phase, the corresponding action
is applied to the candidate model, and the response is compared to
that of the target system. The fitness of a candidate model is based
on how well it reproduces the response of the target. Formally, the
fitness of model Mi is defined as:

MOD FIT (Mi) =
1

E

EX

e=1

sim(Bi,ae ,Tae) (3)

where E is the number of currently recorded experiments, Bi,a is the
behavior of candidate model i for action a, ae is the action associ-
ated with experiment e, and Tae is the recorded behavior of the target
system from experiment e. The similarity measure, sim, is the same
as for the exploration phase. The model optimization genetic algo-
rithm is also configured with a fixed population size and allowed to
evolve for a pre-determined number of generations. The final model
hypothesis is selected from the final generation as the candidate with
the highest fitness.

The main difficulty in applying these methods directly is that the
response of the robot to a given set of commands is highly dependent
on the initial positions of the flippers. Without direct knowledge of
this information, we need to infer the positions as part of the evolu-
tionary process.

3.3 In-Band Inference
In our first inference method, referred to as In-Band Inference, we
attempt to infer the unknown initial flipper positions in conjunction
with model optimization in the estimation phase. To do so, we aug-
mented the definition of an experiment on the target system to in-
clude meta-information about the context in which it was performed,
specifically, a range of angles for each flipper/fin and a probability in-
dicating the confidence that the true position of the flipper lay in that
range. Let us first describe how this information is used. We modi-
fied our simulator’s PERFORM() method, which commands the sim-
ulation to run an experiment, to incorporate this information. Pseu-
docode is shown below. The inferred initial position of each flipper
is stored within the experiment as a range from some min angle to

Figure 4. The simulated aquatic robot is designed to have configurable flip-
per sizes. Since the underlying representation of the model is a binary string,
dimensions are discretized as shown.

some max angle, and returned by the experiment.getAngles()
method. The setF lippers() function samples uniformly from the
range [min angle,max angle] for each flipper.

function PERFORM(experiment)
confidence experiment.getConfidence()
if rand() confidence then

angles experiment.getAngles()
setF lippers(angles)

else
randomizeF lipperPositions()

end if
simulate(experiment)

end function

The In-Band algorithm is based on the assumption that models
with higher fitness levels are likely to have good approximations
of the initial configuration. Pseudocode for the modified estimation
phase is given below. After evaluating each of the model hypotheses,
the estimation phase records the initial flipper positions of the k mod-
els with the highest fitness using getKBestPos(models). It then
computes the smallest inclusive angles between these positions on
a per-flipper basis, using smallestInclusive(bestPos), and stores
those inclusive angles in the experiment using setAngles(). At the
end of each EEA round, the inferred values for the resulting experi-
ment are “locked in” by setting the corresponding confidence level to
1.0. Doing so ensures that as part of a given round N , the algorithm
explores initial conditions only for the most recent experiment; the
confidence levels of experiments from prior rounds, that is, the first
N�1 experiments, are all 1.0. In contrast, the confidence level of the
most recent experiment is set to 0.5. This setting effectively means
that half the population is used to explore previously identified ar-
eas of high fitness, while the other half of the population randomly
searches for new high fitness areas.

function ESTIMATE(experiments, models)
experiments.last.setConfidence(0.5)
for generation = 1! maxGenerations do

... pre-existing estimation code ...
bestPos getKBestPos(models)
angles smallestInclusive(bestPos)
experiments.last.setAngles(angles)

end for
experiments.last.setConfidence(1.0)

end function

A potential drawback of this approach is that it can lead to instabil-
ity in the optimization process. A model with potentially high fitness
(in terms of flipper morphology) might be lost due to receiving a
bad set of initial flipper positions, significantly lowering its appar-
ent fitness. Additionally, a model’s fitness can vary from generation
to generation, since it is initialized with different flipper positions in
each. We also note that, while this method is conceptually similar to
Evolutionary Mutliobjective Optimization (EMO) [2], no informa-
tion about the flipper positions is encoded in the model’s genome.
Rather, the inferred information is stored in the experiment’s meta-
information and affects the model’s fitness only implicitly. The rea-
son it cannot be directly added as a fitness component is that the
target position is unknown, so a fitness value for the flipper positions
cannot be determined.

3.4 Out-of-Band Inference

Our second inference method attempts to decouple the tasks of model
optimization and resolution of unknown contextual information. In
this approach, the model optimization process is paused at regular
intervals, in order to perform flipper position inference. The period is
configurable, and in our tests was 35 generations. This setting caused
the model optimization process to be paused for flipper position in-
ference three times during its 100 generations, at generations 0, 35
and 70. The PERFORM() simulation method presented with the In-
Band Inference algorithm was used without change. Pseudocode for
the modified estimation phase is given below. In this algorithm the
optAng() function initializes a genetic algorithm to find an optimal
set of initial flipper positions for the most recent experiment found
during exploration. The fitness of candidate initial configurations re-
flects their ability to help the candidate models reproduce the target
behavior. That is, a set of initial flipper positions that enable the can-
didate models to accurately reproduce the current experiment will
receive a high fitness. In addition, we note that in contrast to In-Band
Inference, this algorithm immediately sets the confidence of new ex-
periments to 1.0. This approach effectively disables the flipper posi-
tion randomization mechanism and implies that all models will use
the inferred initial conditions.

function ESTIMATE(experiments, models)
experiments.last.setConfidence(1.0)
for generation = 1! maxGenerations do

... pre-existing estimation code ...
if generation%periodicity = 0 then

angles = optAng(models, experiments.last)
experiments.last.setAngles(angles)

end if
end for

end function

Next, we describe a set of experiments intended to evaluate the
effectiveness of EEA when modified to incorporate the two inference
algorithms.

4 Results

We began our experiments by establishing two baselines: (1) perfor-
mance of the self-modeling algorithm with known initial flipper/fin
positions and (2) performance of the unmodified EEA in the presence
of unknown starting positions. Next, we evaluated the effectiveness
of the two inference methods at resolving this unknown contextual
information.

Within each set of experiments, the performance of the algorithm
is measured as its objective fitness versus EEA round. The objective
fitness of a model is defined as the average dimensional error over
each of the flipper dimensions. More formally, the objective fitness
is defined as:

OBJ FIT = 1�

1
n

nX

i=1

|modeli � targeti|
maxi �mini

!
, (4)

where n is the number of morphological variables (in our case, 9),
modeli and targeti are the i

th flipper dimensions of the candidate
and target models respectively, and mini and maxi are the mini-
mum and maximum possible values of the i

th dimension. We note
that the objective fitness function is not a measure that is used in the
evolutionary optimization process, but rather as an oracle measure-
ment we monitor from the outside to gauge how the optimization
process is proceeding.

Each test was executed as a set of 25 replicate runs, each of which
was seeded with a different random number seed. The individual
runs were executed as a single threaded process on late-model, com-
modity hardware and given 48 hours of CPU time to complete 25
rounds of the EEA process before being terminated. The orientation
of the target robot was randomized between every action. This was
true of every series reported in the paper and reflects what would
likely be the case in a real-world situation. The genetic algorithm in
the exploration phase used a population of 25 actions and executed
for 25 generations. The genetic algorithm in the estimation phase
used a population of 25 model hypotheses and executed for 100 gen-
erations. Both genetic algorithms used tournament selection with a
tournament size of two, a crossover rate of 0.75 and a mean mutation
rate of one gene per genome. Simulations consisted of a configurable
number of discrete time steps, where each time step was 0.01s of
simulation time, with the total number of steps being a configurable
power of two.

4.1 Ideal Baseline

In order to establish a ceiling on performance, we first executed a
baseline with known flipper positions. In this configuration, the target
aquatic robot has random flipper orientations at the start of each EEA
experiment, but those initial flipper positions are noted and passed
back to the modeling process for use by candidate models. During
the modeling process, each model is able to read the flipper position
information and properly initialize itself before executing the exper-
iment. This case represents what the modeling process could achieve
if the flipper positions were a measurable quantity rather than a con-
textual uncertainty.

Four data series were collected for this configuration, representing
experiment execution times of 1.28s, 2.56s, 5.12s and 10.24s. One

Figure 5. Performance of the modeling process versus EEA round num-
ber when the initial positions of the robot’s flippers are known. Solid lines
represent objective fitness, and dashed lines represent standard deviation.

would expect longer experiment execution times to produce more
accurate models. As can be seen in Figure 5, the performance of
this algorithm is excellent, even for very short experiments of only a
second or two. Objective fitness approaches 1.0 after only a few ex-
periments (EEA rounds) on the target robot, with longer action time
yielding slightly higher fitnesses earlier. In addition, the standard de-
viation between replicate runs is quickly reduced to near zero, indi-
cating that the replicate runs are consistently performing well. This
performance is not surprising, as the effectiveness of the EEA mod-
eling process in quickly finding good model hypotheses, when the
initial conditions are known, has been previously demonstrated [5].

4.2 No-Inference Baseline

In our second study, we removed the assumption of known initial flip-
per positions, introducing uncertainty into the modeling process. The
target aquatic robot is randomized before each EEA experiment, but
this time the initial orientations of its flippers are not stored as meta-
information in the experiment. During the modeling process, each
model has no contextual information to reference, so it initializes its
flippers to a zero state (both pectoral flippers in an ”arms-back” po-
sition, and caudal flipper at zero degrees). This case represents the
performance of the unmodified EEA modeling process when faced
with uncertainty.

Again four data series were collected, representing 1.28s, 2.56s,
5.12s and 10.24s of experiment execution time. As can be seen in
Figure 6, the performance of the EEA modeling process degrades
considerably relative to the ideal baseline. Objective fitness for all
simulation lengths is poor (in most cases no better than 75%) and
does not show improvement over time. In fact, most of the series
actually lose objective fitness over time. The standard deviation be-
tween replicate runs is much higher than the ideal baseline, and is not
reduced over time. This baseline affirms our initial assumption that
the behavior of models, and therefore the modeling performance, is
tightly coupled to the initial configuration of the aquatic robot.

Figure 6. Performance of the modeling process versus EEA round number
when the initial positions of the robot’s flippers are unknown and models are
initialized to a zero state.

Figure 7. Performance of the modeling process versus EEA round number
with In-Band Inference.

4.3 In-Band Inference

Next, we evaluated the In-Band Inference algorithm. In this config-
uration, the target system is randomized between each run and, as
in the no-inference baseline, the starting position of the flippers is
not stored as meta information in the experiment. Once the modeling
process begins, the flipper/fin positions of each model are random-
ized and the inference algorithm is allowed to process the informa-
tion to deduce likely flipper positions. As the GA works to find likely
flipper dimensions, the In-Band Inference works to reduce the uncer-
tainty in flipper/fin position, hopefully producing a better estimation
of the other parameters through a reduction in uncertainty.

This algorithm was executed with a few different values of K (the
number of elite individuals whose starting conditions are analyzed),
and a value of K=3 offered the best performance. The results of ap-
plying this inference algorithm with K=3 are reported in Figure 7. As
shown, the algorithm is able to improve the objective fitness of all se-
ries by 10-15%, demonstrating its ability to reduce the uncertainty in

Figure 8. Performance of the modeling process versus EEA round number
with In-Band Inference and a larger population size of 200 individuals.

initial flipper configurations. The standard deviation between runs is
also reduced across the board, but remains mostly constant over time.

After analyzing the results of this algorithm, we observed that the
inferred flipper angles never seemed to converge. Instead, the algo-
rithm would appear to identify a set of highly fit initial conditions
and begin to converge, then suddenly jump to an entirely different
set of initial conditions. We hypothesized that this sporadic behav-
ior could be the result of the rather large number of individuals (half
the population) that were randomized each generation. In an effort to
curtail this behavior, we implemented a dynamic split ratio between
models that would be randomized, and those that would use the in-
ferred angles. Initially the population is split in half (randomized vs.
inferred) as before, but over time this ratio is reduced such that by
the midpoint of model optimization, 100% of the models are using
the inferred angles. We reasoned that increasing level of confidence
in the inferred angles would help the algorithm to converge to flipper
orientations, and then spend the remaining optimization generations
working solely on deducing the dimensions of the flippers.

Unfortunately, the results of this modification did not show any
improvement. Objective fitness and standard deviation for all runs
remained at similar levels to the basic algorithm original In-Band al-
gorithm. After some additional analysis, we decided to test another
modification to the algorithm. The previous versions of the algo-
rithm used flipper angles uniformly sampled from within the inferred
range. This mechanism provided a good search technique for explor-
ing within the bounds, but did not provide a means for the algorithm
to locate good candidates just outside these bounds. In order to allow
the algorithm to “walk” the inferred angles to one side or the other,
we extended the range of the inferred angles to reach 20% past the
limits on either side.

However, the results from this modification told a similar story as
before: objective fitness remained nearly the same, and variance be-
tween replicate runs was still high. It appeared that this methodology
of inferring angles was simply too disruptive to the modeling process,
at least with current optimization parameters. To further explore the
bounds of this algorithm, we increased the population of model can-
didates from 25 to 200. This modification improved objective fitness.
Results are shown in Figure 8, where the objective fitness is slightly
below 90% and the standard deviations is under 10%.

Figure 9. Performance of the modeling process versus EEA round number
with Out-Of-Band Inference.

4.4 Out-Of-Band Inference

After observing the disruption to the underlying optimization process
caused by In-Band Inference, we developed the Out-Of-Band Infer-
ence algorithm, described earlier. We hoped that by separating the
two tasks of flipper size estimation and flipper position inference, the
algorithm would produce better, more consistent results.

Our first run of this algorithm, reported in Figure 9, showed
promising results. Objective fitness approached 90%, was monotoni-
cally increasing and consistent from round to round. The standard de-
viation between replicate runs was similar to results obtained using
the In-Band Inference algorithm. In order to explore the bounds of
this algorithm’s performance, we again decided to increase the popu-
lation size of the models in the estimation phase. However, increasing
the model population to 100 (from 25) resulted in prohibitively long
computation time, since complexity is proportional to the product of
estimation phase population size and the meta-level algorithm’s pop-
ulation size. In seeking ways to reduce complexity, we hypothesized
that it was only necessary to check that the fitness of a small sample
of the models was maximized, rather than the entire population. This
hypothesis appears to be correct, as demonstrated in Figure 10. De-
spite only using a sample of 5 models instead of the entire population
of 100, the algorithm still effectively increased the objective fitness
to the best levels we had seen thus far. With a reasonable perform-
ing self-modeling algorithm in hand, we next tested it on a simulated
robot that has incurred damage.

5 Testing on a Simulated Robot with Damage

In this section, we present results of a case study where we applied
the original EEA approach and our Out-of-Band Inference enhanced
EEA algorithm in order to estimate the morphology of a simulated
target robot with a damaged pectoral flipper (half the flipper is miss-
ing); see Figure 11(a). In Figure 11, flippers and fins are highlighted
in red for clarity. Three runs were conducted using morphological
models derived from, respectively, the standard EEA approach, our
Out-of-Band Inference EEA, and the original configuration for our
robot (i.e., no damage). In each case, after producing a model of the
robot, we evolved a controller for each model, with a goal of enabling
the robot to swim forward effectively given this damaged state.

Figure 10. Performance of the modeling process versus EEA round number
with Out-Of-Band Inference, an increased population size of 100, increased
meta-level population size of 50, and extended simulation times.

As shown in Figures 11(b) and 11(c), the two EEA approaches ar-
rived at very different morphologies, with the Out-of-Band Inference
EEA result closely resembling the damaged robot. These individu-
als were then placed into a digital simulation environment, where we
used the NEAT algorithm [27] to evolve artificial neural networks
(ANNs) as controllers for them. We chose to use ANN controllers
based on our previous experience with them in a station keeping
task [24]. Fitness was based on swimming as far forward as possi-
ble in 20 seconds of simulation time.

As the goal of self-modeling is to produce internal representations
of the robot and apply that model to controller development, solu-
tions were then evaluated in the following manner. First, the best
performing individuals from each of the three treatments were evalu-
ated, with both their overall progress forward and position over time
logged. We then took the best controllers from (a) runs for the orig-
inal undamaged morphology, (b) the unmodified EEA, and (c) the
Out-of-Band Inference EEA, and executed them on the target, dam-
aged morphology. These three runs allow us to evaluate the relative
performance of solutions developed using the two EEA-based algo-
rithms, when compared to the original target morphology.

Trajectories for evolved controllers are depicted in Figure 12. The
original controller evolved for the undamaged robot swims effec-
tively when paired with the undamaged morphology, but does not
do well when executed on the damaged morphology, as seen in Fig-
ure 12(a). Such a situation might occur under normal operating con-
ditions, where damage and wear are likely to alter the morphology of
an individual. Since the controller was developed for a known mor-
phology, coordination between the pectoral flippers and caudal fin
break down when the morphology changes. This breakdown is ap-
parent in Figure 12(a), where the damaged system with the original
controller stalls and drifts.

In contrast, solutions attained through self-modeling attempt to
account for changes in the morphology through evolution of new
models. Figure 12(b) plots the tragectories using the original EEA
approach. Although the evolved controller does well when applied
to the EEA-generated model (its “native” morphology), when ap-
plied to the actual target it fails to attain even the performance of
the original controller. This follows, given that the model shown in
Figure 11(b) does not accurately reflect the damage. When the con-

(a)

(b)

(c)

Figure 11. Simulated robots from the case study: (a) damaged target robot
with a pectoral fin half the length of a normal one; (b) morphological model
produced using the original EEA approach; (c) morphological model pro-
duced by the Out-of-Band Inference EEA approach.

troller is transferred into the damaged morphology, the robot floun-
ders about the starting point while making no little forward progress.
Using the Out-Of-Band Inference EEA, however, results of the trans-
fer improve noticeably, as shown in Figure 12(c). The controller op-
erates effectively both in its native morphology and in the morphol-
ogy of the target; both are able to swim forward with only a small
advantage for the native morphology.

Results of these validation runs demonstrate both the effectiveness
of the EEA approach, as well as the importance of reducing uncer-
tainty as part of the process, at least for certain contexts. While the
original EEA approach was not able to arrive at an adequate internal
representation of the target, the Out-of-Band Inference approach was
able to build a fair internal representation, enabling evolution of an
effective swimming behavior for the damaged robot.

−0.2
−0.1

0.0
0.1
0.2

0 1 2 3
X−axis

Y−
ax

is

Undamaged Target

Trajectory of Undamaged and Target

(a)

−0.2
−0.1

0.0
0.1
0.2

0 1 2 3
X−axis

Y−
ax

is

EEA Target

Trajectory of EEA and Target

(b)

−0.2
−0.1

0.0
0.1
0.2

0 1 2 3
X−axis

Y−
ax

is

OoB EEA Target

Trajectory of OoB EEA and Target

(c)

Figure 12. Trajectories of the evolved solutions from EEA runs and their
performance when used to control the damaged target robot: (a) controller
evolved for the original undamaged robot, when evaluated on both original
and the target; (b) controller evolved using the morphology found by unmod-
ified EEA, evaluated on both the EEA model and the target; (c) controller
evolved using the morphology found by the Out-of-Band Inference EEA,
evaluated on both the OOB-EEA model and the target.

6 Conclusions

Robotic and cyber-physical systems of the future need to provide
high levels of resilience and adaptability. Self modeling represents a
key technology in reaching that goal, enabling systems to compen-
sate at run time for unanticipated scenarios. Although a solid foun-
dation of work has been laid in this area, several outstanding issues
have received relatively little attention. Among these issues is deal-
ing with uncertainty in the modeling process; uncertainty can stem
from the environment, or in the case of our study, limitations of the
robot itself.

We have developed and studied two techniques for reducing the
negative impact of the unknowns by inferring them during the mod-
eling process. We found that although these algorithms cannot com-
pletely overcome the lack of sensor information, much of the un-
certainty can be removed. In our application, the aquatic robot was
able to infer information about its initial configuration, substantially
improving the performance of its model estimations.

These inference algorithms may be applicable to other domains
within the EEA self-modeling framework. Although we investigated
only the inference of missing servo motor information, the same
techniques could be applied to deduce environmental factors, such
as water flow in an aquatic environment, or the terrain slope for a ter-
restrial robot. By inferring the unknown values on a per-experiment
basis we have avoided making any assumptions about these values
remaining static over time. In addition, the inferred values do not
need to be encoded in the model’s genome, reducing the complexity
of the model search space.

Acknowledgments

The authors gratefully acknowledge the contributions and feedback
provided by Professor Xiaobo Tan, members of the Software Engi-
neering and Network Systems Laboratory, the Smart Microsystems
Laboratory, and the BEACON Center at Michigan State University.
This work was supported in part by National Science Foundation
grants CNS-1059373, CNS-0915855, DBI-0939454, CCF-0820220
and CNS-0751155.

REFERENCES
[1] Awards for human-competitive results produced by genetic and evo-

lutionary computation. Competition held as part of the annual Ge-
netic and Evolutionary Computation Conference (GECCO), spon-
sored by ACM SIGEVO. Results available at http://www.human-
competitive.org.

[2] Evolutionary Multiobjective Optimization: Theoretical Advances and
Applications, eds., Ajith Abraham and Robert Goldberg, Springer,
2005.

[3] Joshua E. Auerbach and Josh C. Bongard, ‘Evolution of functional spe-
cialization in a morphologically homogeneous robot’, in Proceedings
of the 11th Annual Genetic and Evolutionary Computation Conference
(GECCO), pp. 89–96, Montreal, Quebec, Canada, (2009). ACM.

[4] Gordon Blair, Geoff Coulson, and Nigel Davies, ‘Adaptive middleware
for mobile multimedia applications’, in Proceedings of the Eighth In-
ternational Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), pp. 259–273, (1997).

[5] J.C. Bongard and H. Lipson, ‘Automated robot function recovery af-
ter unanticipated failure or environmental change using a minimum
of hardware trials’, in Evolvable Hardware, 2004. Proceedings. 2004
NASA/DoD Conference on, pp. 169–176, (2004).

[6] Josh Bongard, Victor Zykov, and Hod Lipson, ‘Automated synthesis of
body schema using multiple sensor modalities’, in In Proceedings of
the Tenth International Conference on the Simulation and Synthesis of
Living Systems (ALIFEX, pp. 220–226, (2006).

[7] Josh C. Bongard and Hod Lipson, ‘Automated damage diagnosis and
recovery for remote robotics’, in Proceedings of the 2004 IEEE Inter-
national Conference on Robotics and Automation, pp. 3545–3550, New
Orleans, Louisiana, (May 2004).

[8] Josh C. Bongard and Hod Lipson, ‘Automating genetic network infer-
ence with minimal physical experimentation using coevolution’, in In
Proceedings of The 2004 Genetic and Evolutionary Computation Con-
ference, pp. 333–345. Springer, (2004).

[9] Josh C Bongard and Hod Lipson, ‘Once more unto the breach: Co-
evolving a robot and its simulator’, in Proceedings of the Ninth Inter-
national Conference on the Simulation and Synthesis of Living Systems,
pp. 57–62, Boston, Massachusetts, USA, (2004).

[10] Rodney A. Brooks, ‘Artificial life and real robots’, in Proceedings of
the First European Conference on Artificial Life, pp. 3–10. MIT Press,
Cambridge, MA, (1992).

[11] Betty H. C. Cheng, Andres J. Ramirez, and Philip K. McKinley, ‘Har-
nessing evolutionary computation to enable dynamically adaptive sys-
tems to manage uncertainty’, in Proceedings of the First International
Workshop on Combining Modelling and Search-Based Software Engi-
neering (CMSBSE), San Francisco, California, USA, (May 2013).

[12] Kenneth A. De Jong, Evolutionary Computation: A Unified Approach,
MIT Press, 2002.

[13] F. C. Dyer and H. J. Brockmann, ‘Biology of the Umwelt’, in Foun-
dations of Animal Behavior, eds., L. D. Houck and L. C. Drickamer,
529–538, University of Chicago Press, (1996).

[14] Dario Floreano, Phil Husbands, and Stefano Nolfi, ‘Evolutionary
Robotics’, in Handbook of Robotics, Springer Verlag, Berlin, (2008).

[15] John H. Holland, Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, University of Michigan Press, 1975.

[16] Nick Jakobi, ‘Running across the reality gap: Octopod locomotion
evolved in a minimal simulation’, in Proceedings of the First European
Workshop on Evolutionary Robotics, pp. 39–58, Paris, France, (1998).
Springer-Verlag.

[17] Jeffrey O. Kephart and David M. Chess, ‘The vision of autonomic com-
puting’, IEEE Computer, 36(1), 41–50, (2003).

[18] Sylvain Koos, Jean Baptiste Mouret, and Stéphane Doncieux, ‘Crossing
the reality gap in evolutionary robotics by promoting transferable con-
trollers’, in Proceedings of the 2010 ACM Genetic and Evolutionary
Computation Conference, pp. 119–126, New York, New York, USA,
(2010). ACM.

[19] Hod Lipson, ‘Evolutionary robotics and open-ended design automa-
tion’, in Biomimetics, ed., Bar Cohen, 129–155, CRC Press, (2005).

[20] Hod Lipson and Josh Bongard, ‘An exploration-estimation algorithm
for synthesis and analysis of engineering systems using minimal phys-
ical testing’, in Proceedings of the 2004 ASME Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference (IDETC/CIE2004), pp. 1087–1093, Salt Lake City, Utah,
(2004).

[21] Pattie Maes, ‘Concepts and experiments in computational reflection’,
in Proceedings of the ACM Conference on Object-Oriented Languages
(OOPSLA), pp. 147–155. ACM Press, (December 1987).

[22] S. H. Mahdavi and P. J. Bentley, ‘An evolutionary approach to damage
recovery of robot motion with muscles’, in Proceedings of the Seventh
European Conference on Artificial Life, pp. 248–255, Dortmund, Ger-
many, (September 2004).

[23] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, ‘Com-
posing adaptive software’, IEEE Computer, 37(7), 56–64, (2004).

[24] Jared M. Moore, Anthony J. Clark, and Philip K. McKinley, ‘Evolu-
tion of station keeping as a response to flows in an aquatic robot’, in
Proceedings of the 2013 ACM Genetic and Evolutionary Computing
Conference, pp. 239–246, Amsterdam, The Netherlands, (2013).

[25] R. Smith. Open Dynamics Engine. Manual and source code available
online at: http://www.ode.org.

[26] Andres J. Ramirez, Betty H. C. Cheng, Philip K. McKinley, and Ben-
jamin E. Beckmann, ‘Automatically generating adaptive logic to bal-
ance non-functional tradeoffs during reconfiguration’, in Proceedings
of the 7th International Conference on Autonomic Computing, pp. 225–
234, Washington, DC, (June 2010).

[27] Kenneth O. Stanley and Risto Miikkulainen, ‘Evolving neural networks
through augmenting topologies’, Evolutionary Computation, 10(2), 99–
127, (June 2002).

[28] Kenneth O. Stanley and Risto Miikkulainen, ‘Competitive coevolu-
tion through evolutionary complexification’, Journal of Artificial Intel-
ligence Research, 21, 63–100, (2004).

[29] Daniel M Wolpert, R Chris Miall, and Mitsuo Kawato, ‘Internal models
in the cerebellum’, Trends in cognitive sciences, 2(9), 338–347, (1998).

[30] Ji Zhang and Betty H. C. Cheng, ‘Model-based develpment of dynami-
cally adaptive software’, in IEEE International Conference on Software
Engineering (ICSE06), Shanghai, China, (May 2006). IEEE.

	Text2: Proceedings of the 6th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems, in conjunction with the 12 European Conference on Artificial Life, Taormina, Italy, Sept. 2013.

