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Abstract—Simulation is a vital component for many machine
learning-based systems. In this abstract, we present our work
using Unreal Engine 5 to create realistic environments for
training a neural network used in the navigation system of a
mobile robot. We explore the use of randomized textures to
create dynamic environments, and we evaluate trained models in
environments with both randomly changing and static textures.
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I. VISIONS

We are building a simulation environment to find and
synthesize both mundane and exceptional environments. Au-
tonomous systems should easily handle known, mundane
scenarios (e.g., navigating a wide hallway with markers and no
dynamic, external actors), but they should also operate safely
in exceptional scenarios (e.g., in the presence of many people
behaving in unexpected ways, wearing unusual clothing, and
making unusual sounds). We are building a simulation system
in which we can design data generation algorithms for both
of these cases and everything in between. We will find the
scenarios that are unhandled by our systems and use them to
train updated models.

Synthetic data will play a major part in the future of
robotics. Reconstruction techniques such as photogramme-
try [1] and NeRF [2], Al-generated content (AIGC) like stable
diffusion [3], and more conventional procedural generation
algorithms will be combined to generate data that is both real-
istic and challenging. Models trained with these environments
will have a better chance of surviving the transition from a
virtual space into the real world.

II. PROJECT SUMMARY

Autonomous systems are going to have a ubiquitous pres-
ence in our day to day lives. Developers of these systems
are increasingly reliant upon machine learning models to help
make decisions. This is particularly true for systems operating
in unstructured, real-world environments where it is difficult
to hand-design a response to every possible interaction. Since
machine learning models are only as effective as the data on
which they are trained, roboticists have turned to creating
datasets in virtual environments as they are safer, more dy-
namic, cost-effective, easier to manipulate, and do not result
in damaged robots [4].

Using simulation comes at the cost of efficacy—models
created using synthetic data perform differently in simulation
and reality. In order to bridge the gap between simulation
and reality, we explore a variety of possibilities in our hyper-
realistic environments created using Unreal Engine 5 (UES).
These features include varied lighting, textures, and dynamic
environments. In this abstract we focus on varied textures.

Figure 1 shows our UES environment along with the corre-
sponding real-world building. We modeled the building using
Blender, but we are also exploring the use of photogrammetric
models, which can also be imported into UES, and NeRF.
Similar to domain randomization [5], the simulation enables
us to dynamically change wall, ceiling, and floor textures, and
will enable us to change lighting conditions and add dynamic
actors into the scene.

We created several agents to navigate the simulation envi-
ronment. Different agents follow different paths and collect
data with different characteristics. For example, a “perfect”
navigator will follow a path down the center of each hallway
and turn 90 degrees at each corner, whereas a “wandering”
navigator will follow a similar path but occasionally take
random actions causing it to deviate from the perfect path
and collect data from more varied viewpoints. Our initial
datasets include images captured from the view of a camera
mounted on a small wheeled robot, as well as information
about the correct action to take at each step. Correct actions are
computed using a map of the environment that is not available
to the robot during the training process.

We generate data by sending commands to UES from an
external script using the open sound control (OSC) protocol,
which is built into UES. This networked setup enables quick
iteration and experimentation with different data generation
patterns. We collected four datasets for the experiments pre-
sented in this abstract by paring: (1) perfect navigation and
static textures, (2) perfect navigation and randomized textures,
(3) wandering navigation and static textures, and (4) wandering
navigation and randomized textures. Datasets (2) and (4) have
textures randomly changed after every 20 actions executed by
a navigator. Datasets are relatively small comprising only a
few thousand images each.

For results presented here, we train a ResNet-18 [6] model
using fastai [7]. Models are trained to navigate the robot
from one point in the simulation environment to another.



Fig. 1: (Top Left) Photograph of a hallway in Oldenborg Hall on Pomona College’s campus. All other images depict the same

hallway in simulation with different randomly selected textures.
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Fig. 2: Validation accuracy and loss for models trained using
different datasets.

We explored using both pretrained and non-pretrained models
and, unsurprisingly given the small dataset size, found that
pretraining drastically improves performance. Models take
images as input and output the next action for the robot to take
(move forward or rotate left/right). We also explored custom
architectures that include additional information as input, such
as the output of the previous step (see our previous work for
more information [8]). Figure 2 shows the accuracy and loss
as calculated on a validation dataset comprising 20% of the
complete dataset.

Model accuracy and loss are generally good indicators of
performance [9], however, it is important to also evaluate
trained model performance on the navigation task. Our eval-
uation indicates that dataset (1) created using perfect naviga-

tor and static textures achieves the best performance in the
static environment and the worst performance in the dynamic
environment. On the other hand, while models trained using
dataset (4) perform particularly poorly in static environments,
they do have the best performance in the environment with
textures that change randomly. Although using a pretrained
network improves performance, it is important for our next
experiments to include larger datasets with more variability—
both in textures and in the viewpoints represented in the
captured images.

The work presented in this abstract will continue primarily
in two directions. First, we will explore additional randomized
features, such as lighting and dynamic actors. Second, we will
evaluate trained models in the real world on our prototype
robot.
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