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Abstract

Neural networks (NNs) are effective controllers for evolution-
ary robotics, imposing few limits on potential gaits. Mor-
phology evolved with a controller enables brain and body to
become tightly coupled. Typically, NN parameters (sometimes
architectures) and animat bodies are randomly initialized at the
start of evolution. In this paper, we pretrain NNs with super-
vised learning, bootstrapping NN outputs towards oscillating
behaviors prior to evolution. We focus on quadrupedal gaits as
they are well-studied in biology and several common gait pat-
terns have been identified, named, and studied by the research
community. We hypothesize that performance of evolved gaits
will improve with pretraining compared to beginning evolu-
tion with randomly initialized NNs. Our results show that only
some pretraining regimens outperform (in terms of distance
traveled and viability) random initialization of NN parameters.
Furthermore, some regimens introduce an initial bias that is
difficult to overcome, resulting in better initial performance
but worse performance in the long term.

Introduction
Quadrupedal gaits follow specific rhythmic patterns coordi-
nating the movement of multiple limbs and joints to realize
locomotion. Body composition influences the type of gait
such as hopping in kangaroos (Alexander and Vernon, 1975),
galloping in horses (Alexander, 1988), and undulating swim-
ming in salamanders (Ijspeert et al., 2005). Morphological
characteristics, such as tendon elasticity (Alexander, 1988;
Geyer et al., 2006) and flexible spines (Culha and Saranli,
2011), aid in performance and efficiency. Although animals
refine their gaits throughout their lives–adjusting to changes
in morphology due to growth and aging–the basic under-
lying movements are innate. Evolutionary robotics (ER)
approaches, however, often begin with a bio-inspired mor-
phology and randomly initialized controllers. Randomly gen-
erated NNs face the initial hurdle of mapping a periodic input
signal to coordinated oscillating movements across many
joints enabling effective locomotion.

In this paper, we pretrain NN controllers with a supervised
learning algorithm and then continue optimization by coe-
volving morphology with control. Prior to evolution, super-
vised learning trains NN outputs to match periodic oscillating

signals hand-designed to simulate the motion of joints ob-
served in several quadrupedal gaits. Pretraining enables the
evolutionary process to begin with controllers predisposed
to coordinated oscillatory motion. We begin with a compari-
son between NNs seeded with random parameters and NNs
seeded with pretrained parameters in a many-objective task
using Lexicase selection (Spector, 2012). For these initial
experiments, we pretrain NNs to match simple sinusoidal pat-
terns that do not directly correspond to a standard gait. Next,
we explore evolving NNs pretrained on quadrupedal gaits ob-
served in animals. Our key hypotheses are that 1) pretraining
will result in higher performing quadrupedal gaits in terms
of distance traveled and efficiency, and 2) pretraining speeds
up the evolutionary process by alleviating the occurrence of
NNs in early generations where input signals do not bring
about oscillation in NN outputs.

Our results show that some pretraining regimens evolve ef-
fective locomotion more rapidly and outperform random ini-
tialization on some objectives. Effective locomotion evolves
across all treatments, including the non-pretrained baseline,
resulting in a variety of morphologies. Figure 1 shows a sam-
ple of evolved quadruped animats. Further, the mechanical
feasibility of evolved gaits (i.e., how easily a gait could be
implemented with physical parts and motors) for pretraining
exceeds that of many randomly initialized NNs.

Background and Related Work

Evolutionary robotics (ER) (Floreano et al., 2008) leverages
digital simulation and high-performance computing evolving
animats with genetic algorithms. ER approaches have demon-
strated effective locomotion in quadrupeds (Clune et al.,
2009), hexapods (Pretorius et al., 2019), and soft robots (Ch-
eney et al., 2013), among others. Coevolving morphology
and control leads to effective systems where brain and body
are highly intertwined (Paul and Bongard, 2001; Hornby and
Pollack, 2001). For locomotion, preevolving NNs, that is
evolving the brain to elicit oscillation before embodiment,
has elicited oscillatory behavior in legged animats (Stanton
and Channon, 2015).
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Figure 1: A variety of morphologies evolve across treatments. All quadrupedal animats have three torso segments and three
segment legs. Limb lengths, torso dimensions, and joint ranges are some of the morphological aspects that evolve together with
the NN controller.

Traditional neuroevolutionary algorithms (e.g.,
NEAT (Stanley and Miikkulainen, 2002)) are single
objective, typically focusing on a performance metric like
distance traveled. Evolving alongside a morphology is
possible with modification, but the task remains single
objective (Moore and McKinley, 2017). In living organisms,
conversely, multiple factors are used to assess gait perfor-
mance. For example, galloping is the fastest quadrupedal
gait, but incurs high ground reaction forces, which can lead
to degradation. Whereas, canters and trots reduce ground
impact forces on the body but require more metabolic power
output (McMahon, 1985). Observations in robotics have
shown that flexible spines reduce the vertical center of
mass (COM) movement improving efficiency (Ackerman
and Seipel, 2013). More directly, Sellers et al. (2003)
evolved bipedal walkers with metabolic efficiency as the
fitness objective evolving effective, efficient locomotion.
Drawing upon these observations, we evolve animats in
a many-objective evolutionary algorithm incorporating
traditional fitness objectives like distance traveled while also
including objectives for efficiency.

Outside of neuroevolution, NNs are frequently pretrained
or updated online. For example, Erhan et al. (2010) used an
unsupervised learning process to improve the performance
of gradient-based training. More recently, transfer learning
(using a pretrained model on a new, different task) and fine-
tuning (a training technique in which only some model param-
eters are updated) have been shown to dramatically decrease
training time (Howard and Gugger, 2020). Reinforcement
learning is a commonly used technique for developing walk-
ing gaits in real-world robots. Even state-of-the-art methods,

however, require hours of execution to develop a working
gait (Haarnoja et al., 2019).

Lexicase selection (Spector, 2012) is a many-objective se-
lection operator for evolutionary algorithms. Lexicase selec-
tion evaluates individuals one objective at a time, returning
the best individual from a sample if it outperforms others
in the sample on the objective under consideration. If two
or more individuals are tied, another objective is randomly
sampled and all tied individuals are evaluated again. If all
objectives are exhausted, a random selection of the remain-
ing individuals is performed. Epsilon-Lexicase (ε−Lexicase)
selection (La Cava et al., 2016) modifies the Lexicase selec-
tion mechanism for real-valued fitness metrics where “close”
performance between individuals might mean there is not an
appreciable performance difference. For example, all indi-
viduals within 95% of the best performer are considered to
be tied with respect to the given objective. Two modifica-
tions to Lexicase facilitate use in real-valued fitness tasks and
improve computational efficiency in ER. First, ε−Lexicase
selection is effective in ER where small differences in fit-
ness do not translate to substantially different gait perfor-
mance (Moore and McKinley, 2016; Moore and Stanton,
2018, 2019). Second, down-sampled Lexicase selection (Hel-
muth and Spector, 2020) reduces the number of objectives
considered per selection event by randomly sampling only a
subset of the objectives under consideration during the selec-
tion process. This can significantly reduce computation time
while not significantly hindering performance in practice.
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Methods
Quadrupedal Animat The quadrupedal animat consists
of a three-segment torso and four three-segment legs. Torso
segments are connected by 2 degree-of-freedom (DOF) joints
allowing for rotations in the y (side-to-side) and z (up-and-
down) axes. Legs are attached to the front and rear torso
segments. The hip, knee, and ankle joints are also 2-DOF
joints allowing for movement along the long axis of the
animat as well as to move away from the midline. Each
foot has a touch sensor providing information on whether a
foot is in contact with the ground. Figure 1 highlights some
morphologies that evolve in experiments presented in this
paper.

The morphological component of an animat’s genome
comprises 69 real-value numbers. The first gene codes for
spine type: rigid, flexible hinge, or actively controlled hinge.
The second codes for the lowest leg joint: rigid, flexible
slider, or actively controlled hinge. Joints are constrained
by a maximum joint velocity gene, 14 genes for maximum
exertable joint force, 28 genes specifying upper and lower
joint limits, and 8 genes specifying flexibility of the spine and
lowest limb joints. Note that some genes are not expressed
in an animat depending on the type of joints coded for the
spine and lowest leg joint in the genome. Four genes specify
the initial rotation of the upper and mid-leg segments. Fi-
nally, five genes specify the torso dimensions (two for width
and length of front and rear segments and one for mid-torso
length) and six for the length of the upper, mid, and lower
limb segments. Front and rear legs are grouped together in
the genome enforcing left/right morphological symmetry.

Controller Controllers consist of a fully-connected feed
forward NN with 33 inputs and 28 outputs. Inputs to the
NN include: one periodic oscillating signal with an evolved
frequency, four touch sensors (one per foot), and 28 joint
angle sensors (one for each DOF). There are 28 outputs, one
for each DOF on the quadrupedal animat. The NN is imple-
mented in PyTorch (Paszke et al., 2019) with four hidden
layers of 16 nodes each. The hidden layers have sigmoid acti-
vation functions while the output layer is a tanh allowing for
output values in the range of -1 to 1. An animat’s controller
evolves by mutating NN weights as well as the frequency of
the periodic oscillating signal provided to the NN.

Neural Network Pretraining NNs are trained prior to evo-
lution with the Adam algorithm (Kingma and Ba, 2017) with
a batch size of 16, learning rate of 1∗10−3 and Mean-Squared
Error loss function. Training proceeds for 1,000 epochs. The
training goal is for each output of the neural network to match
a sine wave with frequency of 1.0 sampled 30,000 times over
a 10 second period. This frequency matches the update fre-
quency of the physics simulation. Some treatments alter the
phase offset of the sine wave for different outputs, those are
detailed next.

Treatments Treatments RandInPT, ZeroInPT, and JointF-
bPT examine different possible simulated input combinations
during pretraining and are compared against a baseline with
no pretraining (NoPT). In NoPT, NN parameters are ran-
domly initialized (i.e., no pretraining) and evolved along
with the morphology of the animat. RandInPT (denoting
pretraining with randomized inputs to all inputs aside from
the oscillating input) pretrains the NN to match a series of os-
cillating outputs assigned to each joint. The target oscillating
output of the knees is one phase offset of the hips resulting in
a pretrained gait where the knees and hips move opposite of
each other. A periodic oscillating input signal with frequency
of 1.0 is sent to the first input of the neural network. The four
touch sensors receive random inputs of either 0 or 1 while the
28 joint position sensors receive random inputs in the range
of −1.0 to 1.0. ZeroInPT has the same pretraining strategy
as RandInPT except all inputs but the oscillating input are
sent zeroes. Pretraining with all zeros would indicate that
all sensors (touch and joints) are reading as zero. In JointF-
bPT, each joint’s desired oscillation is offset 1/28 ∗ phase of
the next and previous joint–simulating that the joint sensors
report that each joint is in motion as directed. JointFbPT
emulates robot joints that precisely follow NN commands,
simulating conditions of smooth locomotion with all joints
moving through their range and feeding back into the NN.

Treatments AKneesPT, DiagCoordPT, S3LegsPT, and
3GaitsPT are pretrained to match specific gait patterns in-
stead of a simple sinusoidal pattern. AKneesPT is trained
with all four legs moving symmetrically but the knees being
out of phase of the hips and ankles. It is similar to RandInPT
but now the desired joint positions are sent back to the NN as
inputs. In DiagCoordPT each leg’s knee is out of phase from
the hips but the leg movements are diagonally coordinated.
The front-left and rear-right legs move forward while the
front-right and rear-left legs move backward. S3LegsPT’s
gait maintains the knee out of phase of its respective hip with
three of the legs moving in phase, while the front-right leg
moves out of phase. 3GaitsPT doesn’t pretrain a specific gait,
instead the population is seeded randomly with the three gaits
in Treatments AKneesPT, DiagCoordPT, and S3LegsPT.

Evolutionary Algorithm and Objectives Animats evolve
across 20 replicate runs, each with a unique starting seed,
over 2,000 generations with a population size of 120. Child
animats are formed from two parents through two-point
crossover between two parents with crossover rate of 50%,
otherwise asexual reproduction occurs. Mutation is applied
with a 4% chance of changing a gene’s value. Parents are
selected using ε-Lexicase selection with an ε of 5% and four
individuals randomly sampled from the population per se-
lection event. Downsampling is applied with four objectives
sampled randomly from seven possible objectives at each
generation. Tiebreaks are settled by a random selection of
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the remaining individuals that have been evaluated as equal
on all objectives under consideration.

Individuals are evaluated on seven fitness objectives: (1)
forward distance traveled, (2) euclidean distance traveled, (3)
distance per unit of power, (4) vertical center of mass dis-
placement, (5) time until flipped, (6) number of leg direction
switches, and (7) number of touches by non-toe body seg-
ments. For pure locomotive performance, distance traveled
(objective 1) is the measure typically used in ER experiments.
However, the additional objectives help bootstrap initial lo-
comotion (objectives 2 and 4), support efficient movement
(objectives 3 and 4), and encourage stable locomotion (objec-
tives 4 and 5), while discouraging less practical gaits (objec-
tives 6 and 7).

Results and Discussion
Pretraining Input Strategies Figure 2 plots the best fit-
ness across replicates for the non-pretrained baseline (NoPT)
as well as the first three pretraining treatments (pretraining
without explicitly simulating known gaits). Pretrained NNs
have an early generation performance advantage as Rand-
InPT, ZeroInPT, and JointFbPT exhibit rapid increases in
distance traveled for the first 500 generations. At generation
500, pairwise performance differences in distance traveled
are significant for NoPT / RandInPT, NoPT / ZeroInPT, and
NoPT / JointFbPT (p < 0.01). (We use the Wilcoxon rank-
sum test with Bonferroni correction for all p-values reported
in this paper.) By generation 1,000, differences in distances
traveled by the best individuals in NoPT and RandInPT, Ze-
roInPT, and JointFbPT are no longer significant.

Figure 2: Distance traveled of the best individual per repli-
cate, per generation across the non-pretrained baseline, and
the initial three pretraining strategies not based on quadruped
gait patterns. Shaded areas represent the 95% confidence
intervals.

Figure 3 plots the farthest traveling individual per replicate
after 2,000 generations. After the initial performance boost
provided by pretraining, the randomly initialized NNs evolve
similar performance. Random initialization is as effective
as RandInPT and ZeroInPT, and competitive with JointF-
bPT. Random initialization (NoPT) is the typical strategy

employed for gait evolution in ER, having proven effective
in neuroevolution (Clune et al., 2009; Moore et al., 2015).
These initial results show that, in terms of gait performance,
pretraining aids in the early stages of evolution.

Figure 3: Distance traveled of the best individual per replicate
at generation 1999. All treatments evolve statistically similar
performance on this fitness metric.

Figure 4 plots the efficiency of the farthest traveling indi-
vidual over time. Here we note that pretraining also appears
to aid in evolving efficient locomotion whereas random ini-
tialization incurs an initial lower efficiency before ultimately
becoming competitive with the three pretraining treatments.
JointFbPT is significantly more efficient than NoPT up to
generation 850, but this advantage is no longer present in the
best individual per replicate thereafter.

Figure 4: Locomotive efficiency of the best individual per
generation per replicate for the first four treatments over
evolution. Shaded areas represent 95% confidence intervals.

In terms of distance traveled and efficiency, the four treat-
ments are similar at generation 1999, however, practicality
of evolved gaits is also critical. Figure 5 plots the number
of leg direction switches over time for the farthest traveling
individual per replicate. Here we see a significant differ-
ence (p < 0.001) between NoPT and the pretraining repli-
cates. While some number of direction switches are required
for any locomotion driven by a periodic oscillating signal,
NoPT far exceeds any other treatment.

Even with the number of direction switches added as a
minimization fitness objective in Lexicase selection, some
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Figure 5: Number of leg direction switches for the best indi-
vidual per generation per replicate over evolution. Shaded
areas represent 95% confidence intervals. High numbers of
direction switches indicate vibrating locomotion instead of
walking/running gaits.

replicates in NoPT converge towards vibrating locomotion
rather than classic quadrupedal gaits. Indeed, 10/20 evolved
gaits for NoPT exhibit significantly more vibrating locomo-
tive patterns than any of the other treatments. Figure 6 depicts
the strategy for half of the evolved animats in NoPT. This
gait produces locomotion by rapidly oscillating legs inducing
vibration rather than smooth walking/trotting gaits. Treat-
ments RandInPT, ZeroInPT, and JointFbPT all exhibit more
traditional quadruped gaits albeit with the varied morpholo-
gies in Figure 1. Two representative gaits from JointFbPT
are shown in Figure 7.

Figure 6: A high frequency vibrating gait evolves in 10/20
replicates in NoPT. This gait relies on rapid direction changes
in the legs rather than smooth oscillating gaits. Here, the blur
in the legs shows the range of motion of the quadruped animat
as it moves across the world. Note the tight range of motion.
This animat executes a total of 4802 direction switches in the
legs over the 10 second simulation.

Traditional servo motors are not capable of rapidly chang-
ing direction as would be required for vibrating gaits evolved
in NoPT. Moreover, in all but the smoothest, high friction
environments, vibrating gaits would not be able to handle ob-

stacles placed in an animat’s path. Figure 8 plots the distance
traveled for the farthest traveling individual per replicate in
NoPT grouped by their gait pattern. Vibrating gaits are signif-
icantly lower than regular gaits in terms of distance traveled
and efficiency while also having almost double the number
of leg switches. Given the disparity in performance between
vibrating and regular gaits, we hypothesize that vibrating
gaits are an evolutionary trap preventing the evolution of reg-
ular oscillating locomotion. Even though the number of leg
switches objective is included, it is not enough to escape the
area of the search space where vibrating gaits are prevalent.

Initial performance of gaits at generation 0 are still rela-
tively low for the pretrained NNs as the controller and mor-
phology have not yet had time to coevolve. Bodies of the
animats are randomly initialized including limb length and
joint range of motion. Here, we study what happens if NNs
are pretrained for regular locomotion but the morphologies
are not predefined. Performance could perhaps improve in
initial generations by starting with a predefined quadruped
morphology and evolving from that fixed start; we leave this
for future study. The relative effectiveness, and realizability
of the gaits in the pretraining treatments indicate that pretrain-
ing the NN, even with a randomly generated morphology is
effective. Oscillatory behaviors are evident in initial genera-
tions whereas the baseline randomly initialized NNs saturate
and assume fixed postures. The new sensor information alters
the pretrained behavior of the brains.

Pretraining Gait Patterns Treatments AKneesPT, Diag-
CoordPT, S3LegsPT, and 3GaitsPT pretrain NNs based on
gait patterns observed in quadrupeds. Figure 9 plots the fit-
ness of the best individual over time across replicates for
AKneesPT, DiagCoordPT, S3LegsPT, and 3GaitsPT as well
as NoPT and JointFbPT for comparison. Results of these
treatments are similar to those observed in the initial pre-
training treatments with an initial rapid increase in distance
traveled. AKneesPT, S3LegsPT, and 3GaitsPT are signifi-
cantly better than NoPT up to generation 500, after which
only S3LegsPT is significantly better up to generation 1,250.

Figure 10 plots the performance of the best individual per
replicate after the final generation. Although distance trav-
eled is not significantly different for the baseline versus pre-
training, the type of gait that evolves is qualitatively different
in observed behavior. Figure 11 plots the number of leg direc-
tion switches across the treatments. NoPT has significantly
more direction switches than all gait pretraining treatments
due to the prevalent vibrating locomotion pattern noted ear-
lier. 3GaitsPT does have two outliers exhibiting vibrating
locomotion, but the rest resemble traditional quadruped gaits.
We hypothesize that the outliers in 3GaitsPT evolve as the
populations are seeded with three different pretrained gaits.
Crossover is not restricted to animats with similar gaits, there-
fore, it is likely that this treatment sees a destructive series of
crossovers breaking the pretrained behaviors in the NNs.
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Figure 7: Two gaits that evolve in JointFbPT. (Top) Predominant gait that evolves across treatments in this study. The rear legs
drive movement while the front legs maintain stability as the rear legs move forward. This gait maintains a relatively stable
center of mass minimizing the COM vertical movement. (Bottom) A four legged slow gallop with front and rear legs moving
opposite of each other.

Figure 8: Distance traveled for the farthest traveling indi-
vidual per replicate in NoPT. Animats with regular gaits are
significantly better than those that exhibit vibrating gaits.

Figure 9: Distance traveled for the best individual per gener-
ation per replicate of the final four treatments as compared to
the randomly generated NNs and JointFbPT. Shaded areas
represent the 95% confidence intervals.

The pretrained NNs for AKneesPT, DiagCoordPT, and
S3LegsPT are based on four legged gait patterns observed in
nature. This introduces a potential bias in the populations as
all individuals are likely predisposed to variations of these
gait patterns due to pretraining. From an exploratory per-
spective this is limiting, but from an exploitative/engineering
perspective it might help to focus the search around a specific
gait for a given treatment. While observing evolved gaits in

Figure 10: The farthest traveling individual per replicate after
evolution for the final four treatments do not significantly
outperform NoPT and JointFbPT.

Figure 11: The gaits that evolve in the pretraining treatments
exhibit regular periodic oscillating locomotion except for two
replicates in 3GaitsPT which evolve vibrating gaits.

the best individuals both (a) gaits related to the pretrained
NN pattern and (b) other gaits evolve. Starting from an initial
gait does not completely prevent evolution from discovering
other gait patterns.

In terms of performance, the farthest traveling individuals
from AKneesPT, DiagCoordPT, and S3LegsPT do not outper-
form the other treatments. Although S3LegsPT evolves the
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farthest traveling individual across all treatments, AKneesPT
and DiagCoordPT are among the lowest performing treat-
ments. The mixed results across these three treatments sug-
gest that pretraining from biological gaits might not be the
best approach for robotic systems or easing the transition be-
tween pretraining and evolution might be necessary. JointF-
bPT has higher performance than AKneesPT and DiagCo-
ordPT yet its pretraining was closer to a randomly generated
pattern. It may be that to fully exploit natural gaits, the ini-
tial morphology of the animats must more closely resemble
quadrupeds that exhibit those gaits in nature. However, we
leave this to future investigation.

Conclusions and Future Work
Living animals do not learn how to walk from scratch. Innate
reflexes, preflexes, and instincts finely tuned to morphologies,
enable many animals to walk within hours of birth. Taking
this cue from nature, here we evolve walking animats with
pretrained NNs such that they do not have to evolve simple
joint motions from random initialization. Different pretrain-
ing regimens are explored including random noise, all zeroes,
and simulated joint feedback to NN inputs. Although pre-
training doesn’t produce significantly higher performance
in this study across all seven fitness objectives, the animats
do evolve effective locomotion in fewer generations and the
quality of the gaits is objectively more realistic. Without
pretraining, many evolved animats exhibit a vibrating loco-
motion switching leg directions thousands of times in a 10
second simulation. This behavior would likely damage tra-
ditional robot actuators. The pretraining configuration also
does not appear to significantly effect results as performance
is similar across all pretraining treatments. Training oscil-
lating output from the periodic input is apparently the main
factor in the performance of evolved animats rather than
pretraining to a specific quadruped gait pattern.

In future work we plan to examine improvements to the
pretraining process, explore alternate NN architectures, and
further investigate evolutionary dynamics of Lexicase se-
lection. First, we note that morphologies are randomly ini-
tialized and the NNs are pretrained with random inputs for
footfalls. Kinematic simulations might aid in pretraining by
more accurately simulating foot-ground contact and joint an-
gles. The morphologies have also been randomly initialized,
performance might be improved if the quadruped bodies were
initialized with parameters used during kinematic modeling.
Second, NN topology is fixed across treatments, only weights
are optimized toward oscillating behaviors during pretrain-
ing. Neuroevolutionary approaches like NEAT have shown
the effectiveness of evolving topology along with weights.
We will investigate if tuning network topology in addition
to pretraining weights increases performance and efficiency.
Third, fitness objectives in this paper are intended to improve
both performance in terms of distance traveled as well as
the efficiency of the evolved gaits. Some of these objectives

might hinder performance to increase efficiency. Changing
the objectives, or selectively removing some from consider-
ation at different points in the evolutionary process might
result in more effective locomotion. We plan to investigate
the impact of different combinations of objectives on perfor-
mance of evolved individuals and scheduling of objectives
with in Lexicase.
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