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ABSTRACT
Animal movements are realized by a combination of high-level
control from the nervous system and joint-level movement provided
by the musculoskeletal system. The digital muscle model (DMM)
emulates the low-level musculoskeletal system and can be combined
with a high-level artificial neural network (ANN) controller forming
a hybrid control strategy. Previous work has shown that, compared to
ANN-only controllers, hybrid ANN/DMM controllers exhibit similar
performance with fewer synapses, suggesting that some computation
is offloaded to the low-level DMM. An open question is how the
complexity of the robot, in terms of the number of joints, affects the
evolution of the ANN control structure. We explore this question
by evolving both hybrid controllers and ANN-only controllers for
worm-like animats of varying complexity. Specifically, the number
of joints in the worms ranges from 1 to 12. Consistent with an
earlier study, the results demonstrate that, in most cases, hybrid
ANN/DMM controllers exhibit equal or better performance than
ANN-only controllers. In addition, above a threshold for animat
complexity (number of joints), the ANNs for one variant of the
hybrid controllers have significantly fewer connections than the
ANN-only controllers.
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1 INTRODUCTION
Animals perform complex movements requiring coordination be-
tween brain and body. Control signals from the brain propagate
through the nervous system to muscles, producing movement. In
addition to control signals, the bones, tendons, and muscles that
surround a joint influence motion [1, 2, 7, 25]. For example, the
physical configuration of tendons in the human hand produces a type
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of “anatomical computation” moving fingers without precise input
from the neural system [28].

In robotic systems, joint control is typically handled quite differ-
ently. Individual joint actuators receive commands directly from a
high-level controller. Yet most robotic systems do not possess the
agility and dexterity of natural organisms.

In this paper, we evaluate a bio-inspired hierarchical approach
to robot control [16]. Unlike typical robotic controllers, control
is realized by the interaction between high-level artificial neural
network (ANN) and a low-level construct called the digital muscle
model (DMM) [15]. In this model, a joint is controlled by multiple
muscle nodes that define a collective response to an input signal.
Digital muscles provide an evolvable mapping between an input
signal and joint response. This hybrid control strategy might reduce
demand on the high-level controller, as suggested by previous studies
comparing ANN-only controllers to ANN/DMM controllers and
examining the resulting ANNs [16].

We previously [16] proposed the hierarchical ANN/DMM ap-
proach to control and showed that it is effective in different types
of systems, including legged animats. We also observed that the
evolved ANNs in hierarchical controllers are often simpler (had
fewer connections) than those in evolved ANN-only controllers for
the same systems, implying a possible offloading of control from
the ANN to the DMM. However, our investigations did not examine
whether the number of joints in the animat affects the evolution of
this characteristic.

We address this question by exploring how the number of joints
in an animat influences complexity of the high-level controller. As
shown in Figure 1, the animat consists of a fixed length “worm,”
subdivided into equally sized segments based on the number of joints
in a given configuration. Controllers consist of a high-level ANN
paired with a low-level DMM. Three separate control combinations
are tested, one an ANN-only controller and two hybrid ANN/DMM
controllers with different connectivity between the two control layers.
The controllers are evolved for worm-like animats, where the number
of joints ranges from 1 to 12.

The contributions of this work are as follows. First, the results
support earlier studies that evolved hybrid ANN/DMM controllers
have the same or better, performance compared to their ANN-only
counterparts. Second, ANNs in hybrid controllers exhibit fewer
connections than those in ANN-only controllers, but only for animats
whose number of joints is above a threshold, potentially leading to
more efficient controllers. Finally, we found that in contrast to the
number of connections, the number of hidden nodes in the hybrid
controllers is consistently higher than ANN-only controllers.
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Figure 1: Three worm-like robots. The overall shape and mass of the robot remains constant throughout the different configurations.
(a) Three-joint, (b) five-joint, and (c) ten-joint robot.

2 BACKGROUND AND RELATED WORK
Evolutionary robotics [6, 17, 23] applies concepts from natural evo-
lution to the design of robotic systems. Evolved controllers have
been applied to problems such as rocket guidance [10], quadrupedal
gaits [4], and robot design for space exploration [21]. Morphology
also has a strong influence on overall performance and even performs
a type of “morphological computation” [19] contributing to the be-
havior of a system. For example, Rieffel et al. [20] demonstrated
that by evolving the morphology of a tensegrity robot it can exhibit
effective locomotion without a high-level controller. Control and
morphology can be evolved simultaneously [30] to produce highly
integrated optimized systems [11, 12].

Introducing modularity as a factor in either the ANN controller, or
mophology, can increase performance of robotic systems. Valsalam
et al. [29] demonstrated that enforcing ANN controller modular-
ity (encouraging symmetry and gait robustness) produces effective
gaits in quadrupedal animats. Furthermore, modularity has been
shown to play an important role in increasing performance in game
playing agents [22], robot controllers [5, 18], and robust animats [27].
Additionally, the body plays an important role in the evolution of con-
trollers. For instance, Bongard et al. [3] demonstrated that morphol-
ogy encourages the emergence of neural modularity. In this work,
we employ a computational model of multi-level control that emu-
lates modularization of control between aspects of the brain (ANN)
and body (DMM).

Muscle-inspired control models have produced effective bipedal
gaits in humanoid [31] and other simulated animats [8]. Lessin et
al. [13] applied an evolutionary approach to the development of
complex behaviors in simulated animats based on a custom muscle-
inspired actuation model. Further research has shown that some con-
trol decisions can be offloaded to the musculoskeletal configuration
of the animat itself [14]. These models, however, directly emulate
the behavior and physical characteristics of muscles in simulation.
In contrast, the DMM is an abstract model borrowing concepts from
natural muscles (spatial position and activation functions) yet is
suitable for conventional robotic actuators (servo motors).
3 METHODS

Digital Muscle Model. The DMM, illustrated in Figure 2, is a
low-level control model that maps an input control signal to an
output activation. The central component of the DMM is the muscle

group, consisting of digital muscle nodes, governing the behavior of
an individual joint. Figure 2 shows an individual muscle group, as
applied to a joint between two segments, consisting of four muscle
nodes depicting how the response of the muscle nodes influence the
behavior of the joint. Each muscle node has an evolvable position
relative to the joint and activation function. For this work, each joint
group has four muscle nodes, but it can be changed in the model.

Figure 3 shows the process of converting sensory input to actuator
output for hybrid ANN/DMM controllers. First, the sensory informa-
tion is fed into the high-level ANN controller, which then passes a
signal to each joint group. Depending on the hybrid controller, ANN
outputs are either connected to the joint group, or individual muscle
nodes. For joint groups with one ANN output, the same control
signal is passed to each muscle node. The internal behavior of a
muscle node maps the signal to a joint actuation. A group of muscle
nodes define the direction and angle of movement for a single joint.
Full details of the DMM are available in [15].

Figure 2: A single DMM digital muscle group controls one joint
in an animat. Digital muscle nodes around a joint (their posi-
tions are evolved) exert a pulling force based on the input signal
from a high-level controller and their internal activation func-
tion. (Adapted from [15].)
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Figure 3: An ANN/DMM controller diagram showing how inputs to the ANN flow through the high-level controller into one muscle
group controlling one joint in the animat. (Adapted from [16].)

Hybrid ANN/DMM Control. The ANN controller component is
evolved with the NEAT Algorithm [26] using parameters presented
in Table 1. Pairing DMM controllers with a high-level ANN is shown
in Figure 3. The ANN provides closed-loop control by adjusting
outputs based on sensor data (e.g. touch and joint-angle sensors). In
this study, each muscle group contains four muscle nodes. Together,
the ANN and DMM provide high and low-level control, respectively.

Robot Platform. Throughout all experiments conducted in this
paper, the overall length, width, height, and mass of the animat
remain fixed. As the number of joints increases, the body is divided
into increasingly shorter segments. Each joint is a 2-degree of
freedom (DOF) hinge allowing for movements perpendicular to the
longitudinal axis of the worm with a range of motion of ±90� in
each axis. The segments, simulated as cuboids with sharp corners,
are allowed to intersect with each other. Inputs to the ANN comprise
two angle sensors per joint, a touch sensor for each body segment,
and a bias input typical for most ANNs. A touch sensor triggers
when any part of the associated body segment contacts the ground,
irrespective of orientation.

Simulation Environment. The Open Dynamics Engine (ODE) [24],
a 3D rigid body physics simulation engine, is used to evaluate behav-
iors. ODE simulates friction, gravity, and collisions between bodies.
Joint actuation is achieved by specifying the desired angular velocity
of each hinge. An individual evaluation is conducted for 10 seconds
of simulation time with a timestep of 0.005s. The environment is a
flat, high-friction surface minimizing slippage between the animat
and substrate.

Evolutionary Setup. Three separate treatments are conducted with
a setup similar to those found in [16]: singly-connected ANN/DMM
(SC), individually-connected ANN/DMM (IC), and ANN-only con-
troller (ANN). The ANN treatment employs an ANN to directly
command the animat’s joints. The SC treatment maps a single out-
put from the ANN to each joint, with all four muscle nodes in the
group receiving the same signal (depicted in Figure 2). In contrast,
the IC treatment has a unique ANN output for each muscle node in
an animat (not shown).

Populations comprise 120 individuals and are evolved for 1000
generations. We conduct 20 replicate runs per treatment, each with
a unique starting seed for randomization. An individual’s fitness is
defined as the Euclidean distance from the origin to the average (X,Y)

position of the segments after 10 seconds of simulation time. Each
individual’s genome includes information about the high-level ANN
and low-level DMM. NEAT is used to evolve the ANN component
of an individual genome while the DMM component is subjected to
mutation and crossover operators that modify the activation function
and spatial position of the muscle nodes.

Parameter Value Parameter Value
Compatibility Threshold 5.0 Mutation Rate 0.33
Young Age Threshold 15 Mut Weights Prob 0.90
Species Stagnation 1000 Weight Mut Rate 0.75
Old Age Threshold 35 Max Weight 20
Min Species 1 Add Neuron Prob 0.4
Max Species 25 Add Link Prob 0.4
Recurrent Prob 0.25 Rem Link Prob 0.05
Crossover Rate 0.75

Table 1: NEAT Algorithm Parameters

4 EXPERIMENTS AND RESULTS
4.1 Evolved Gaits
A variety of unique gaits evolve across the different configurations
and replicates. Although the focus of this investigation is not on
the characteristics of individual gaits, we briefly review the types
of locomotion observed for this worm-like animat. Figure 4 shows
a sample of three gaits, one from each treatment. Videos of the
gaits are available at https://youtu.be/CgSG93-D8eo. We note that
all three controller treatments evolve effective gaits for each of the
twelve configurations. Many different behaviors evolve including,
among others, folding (middle of the worm hinges while ends act
as feet), hopping (one end curls and acts as a primitive leg), and
rolling (robot curls into a wheel).

4.2 Analysis
Figure 5 plots the distribution of fitnesses for the farthest traveling
individuals, one per replicate, across the three treatments. Here we
find that the highest performers arise out of the hybrid ANN/DMM
controllers in low (<= 5) and high (>= 8) joint robots. For animats
with 6 and 7 joints, ANN-only controllers evolve the farthest trav-
eling individuals. Table 2, provides all pairwise comparisons using
a Wilcoxon Rank Sum Test between treatments. A prior investiga-
tion [15] showed that evolved DMM controllers driven by a sinusoid

3

149

https://youtu.be/CgSG93-D8eo


Figure 4: A sample of three gaits, one from each treatment. (Top) An ANN-only evolved controller that exhibits a “rolling” gait,
curling and unfolding to produce movement. (Middle) A singly-connected controller with a “hopping” gait; the rear of the worm acts
as a primitive leg. (Bottom) An individually-connected controller with a “walking” gait; the ends of the robot act as primitive legs.

Figure 5: Boxplot showing the fitness of the farthest traveling individual per replicate for the three treatments across the different
number of joints. The hybrid ANN/DMM controllers tend to have higher fitnesses than the best ANN controllers.
controller facilitated quadrupedal locomotion. Here, in robots with
8 joints and greater, we hypothesize that the hybrid ANN/DMM
controllers are able to establish basic movements through the DMM
allowing the ANN component to provide control signals for these
low-level movements. Whereas, ANN-only controllers instead need
to evolve a control strategy for each joint, potentially making the
problem more difficult, especially as the number of joints increases.

This difference in control structure between hybrid and ANN-only
control could explain the performance differences observed in higher
joint animats.

Figure 6 plots the number of connections versus fitness, grouped
by the number of joints in the robot, for the farthest traveling indi-
vidual per replicate in each of the three treatments.

4
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Figure 6: Number of connections versus fitness in the farthest traveling individuals from each replicate run across the twelve joints.5
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The number of connections in the evolved ANNs for the farthest
traveling individuals per replicate varies considerably across the
three treatments. In general, IC controllers have the highest growth
in number of connections as the number of joints increases. This is
not unexpected, considering the high number of ANN outputs due
to connecting to each individual muscle node in the animat. SC and
ANN-only controllers both exhibit increases in network connections,
but at reduced rates. By 11 and 12 joints, the SC controllers have
the fewest number of connections among the three treatments, yet
include high performing individuals.

Figure 7 plots distributions for the number of connections in the
farthest traveling individuals for each of the number of joints exam-
ined in this study. For 1 to 7 joints, ANN-only controllers have the
lowest number of connections. However, for 9 joints and higher, the
SC controllers have significantly fewer connections in their evolved
networks (P-values shown in Table 2). As shown in Figure 5, above
8 joints the SC controllers achieve similar or higher fitnesses than the
ANN-only controllers, while having fewer connections. This result
suggests that the ANN “offloads” some control functionality to the
DMM while maintaining similar performance. Furthermore, this
result indicates a point where an ANN/DMM controller is effective
for locomotion (8 joints and higher). These results are similar to
those observed in the quadruped and hexapod platforms examined
in [16].

Figure 8 plots the number of hidden nodes across the range of
joints. All three controllers exhibit a relatively constant number of
hidden nodes. This result contrasts with that for the number of con-
nections, which steadily increases with the number of joints. ANN-
only controllers have the lowest number of hidden nodes across
all joints. We speculate that this result is related to the fact that
hidden nodes typically act as computational units, while connections
facilitate information transfer in ANNs [32].

These results suggest that there is a certain threshold of hidden
nodes required in any evolved ANN, regardless of the number of
joints. In the case of the hybrid controllers, the hidden nodes may
provide alternative computations compensating for the limited com-
munication capacity between the ANN and the low-level DMM
control. Furthermore, the decreased number of connections in com-
bination with the hidden nodes may indicate that independent com-
putations within the ANN are more prevalent in hybrid controllers
when compared to ANN-only controllers. A neuron performs compu-
tation on the inputs, producing an output, while connections transfer
outputs of the neurons throughout an ANN [32].

4.3 Singly- versus Individually-Connected
Consistent with an earlier study [16], the SC controllers offer similar
performance to the IC strategy, while requiring fewer ANN outputs
and, therefore, less connectivity between ANN and DMM. From
a computational perspective, smaller ANNs will require fewer re-
sources to calculate command outputs. In the case of the worm, the
fitnesses between SC and IC controllers are significantly different
only for 3, 7, and 11 joints (p < 0.001, p = 0.0143, p = 0.01217).
However, the number of connections in these evolved networks is
significantly different for all robots except those with 1 joint (p =
0.9042). As shown in Figure 7, the number of connections in the SC
controllers grows at a slower rate than that of the IC controllers. A

slower growth rate, as observed in the SC controllers, could allow for
an animat with a higher number of joints than would be possible with
IC controllers. High ANN complexity will reduce computational
efficiency.

Comp: 1 2 3 4 5 6
Fitness: SC v IC 0.265 0.862 0.001 1 0.862 0.547

SC v ANN-only 0.030 0.043 0.002 0.001 0.004 0.314
ANN-only v IC 0.121 0.072 0.001 0.001 0.002 0.495

Num Con: SC v IC 0.904 0.028 0.003 0.001 0.001 0.001
SC v ANN-only 0.006 0.001 0.020 0.010 0.001 0.402
ANN-only v IC 0.001 0.001 0.001 0.001 0.001 0.001

Num Hid: SC v IC 0.465 0.449 0.083 0.695 0.978 0.310
SC v ANN-only 0.002 0.001 0.001 0.001 0.001 0.001
ANN-only v IC 0.001 0.001 0.001 0.001 0.001 0.001

Comp: 7 8 9 10 11 12
Fitness: SC v IC 0.014 0.602 0.232 0.698 0.012 0.091

SC v ANN-only 0.001 0.165 0.127 0.091 0.001 0.076
ANN-only v IC 0.211 0.429 0.621 0.211 0.068 0.002

Num Con: SC v IC 0.001 0.001 0.001 0.001 0.001 0.001
SC v ANN-only 0.001 0.140 0.007 0.003 0.001 0.001
ANN-only v IC 0.001 0.001 0.001 0.001 0.001 0.001

Num Hid: SC v IC 0.005 0.137 0.850 0.756 0.120 0.473
SC v ANN-only 0.001 0.001 0.001 0.001 0.001 0.001
ANN-only v IC 0.001 0.001 0.001 0.001 0.001 0.001

Table 2: P-values of pairwise comparison using a Wilcoxon
Rank Sum Test for the farthest traveling individual per repli-
cate from the three treatments. These numbers signify whether
there is a significant difference between the two treatments. Ref-
erence Figures 5, 7, and 8. The three metrics are listed on
the left: fitness, number of connections and number of hid-
den nodes in the evolved networks. Treatments are abbreviated
as follows: (SC) singly-connected, (IC) individually-connected,
and ANN-only.

5 CONCLUSIONS
In this paper, we investigated a hierarchical animat control strategy
focusing on how the number of joints relates to ANN complexity and
performance among different configurations. As with earlier stud-
ies of quadrupedal and hexapedal locomotion, hybrid ANN/DMM
controllers exhibit similar performance to ANN-only controllers for
the majority of test cases. However, as the number of joints in a
robot increases, the farthest traveling hybrid controllers outperform
their ANN-only counterparts, while exhibiting fewer connections in
evolved ANNs. This result suggests that the ANN is offloading some
control functionality to the DMM, similar to theories of biological
control [9].

Furthermore, a single connection (SC) between the ANN and
each muscle group is sufficient to produce effective locomotion.
This configuration also leads to fewer connections within the ANN
while maintaining performance similar to that of the individually
connected (IC) configuration. Such modularization in control might
free the high-level controller to focus on tasks other than governing
low-level movement of joints. Future studies will investigate how/if
this result generalizes to other platforms and behaviors. Considering
these, and previous [16] results, we expect this finding to generalize
to other platforms as it has been shown in quadrupedal, hexapedal,
and now worm-like animats.
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Figure 7: Number of connections for the farthest traveling individuals from 20 replicate runs per each number of joints across the
three treatments. Differences are statistically significant for all except singly- versus individually-connected one joint (p = 0.9042) and
singly-connected versus ANN-only six (p = 0.4017) and eight joints (p = 0.1404).

Figure 8: Number of hidden nodes for the farthest traveling individuals from 20 replicate runs per each number of joints across the
three treatments. Differences are statistically significant for all ANN/DMM versus ANN-only controllers. There are no significant
differences in the number of hidden nodes for singly- and individually-connected controllers except for 7 joints (p = 0.0047).

7

153



ACKNOWLEDGMENTS
The authors gratefully acknowledge the contributions and feedback
provided by Xiaobo Tan, Craig McGowan, and members of the
BEACON Center at Michigan State University. This work was sup-
ported in part by National Science Foundation grants CNS-1059373,
CNS-0915855, and DBI-0939454, and by a grant from Michigan
State University.

REFERENCES
[1] R. Alexander and Alexandra Vernon. 1975. The mechanics of hopping by kanga-

roos (Macropodidae). Journal of Zoology 177, 2 (1975), 265–303.
[2] Kellar Autumn, Metin Sitti, Yiching A. Liang, Anne M. Peattie, Wendy R. Hansen,

Simon Sponberg, Thomas W. Kenny, Ronald Fearing, Jacob N. Israelachvili,
and Robert J. Full. 2002. Evidence for van der Waals adhesion in gecko setae.
Proceedings of the National Academy of Sciences 99, 19 (2002), 12252–12256.

[3] Josh C. Bongard, Anton Bernatskiy, Ken Livingston, Nicholas Livingston, John
Long, and Marc Smith. 2015. Evolving Robot Morphology Facilitates the Evolu-
tion of Neural Modularity and Evolvability. In Proceedings of the 2015 Genetic
and Evolutionary Computation Conference. ACM, Madrid, Spain, 129–136.

[4] Jeff Clune, Benjamin E. Beckmann, Charles Ofria, and Robert T. Pennock. 2009.
Evolving coordinated quadruped gaits with the HyperNEAT generative encoding.
In Proceedings of the IEEE Congress on Evolutionary Computation. Trondheim,
Norway, 2764–2771.

[5] S. Doncieux and J.-A. Meyer. 2004. Evolving Modular Neural Networks to Solve
Challenging Control Problems. In Proceedings of the Fourth International ICSC
Symposium on Engineering of Intelligent Systems (EIS 2004). Madeira, Portugal,
1–7.

[6] Dario Floreano, Phil Husbands, and Stefano Nolfi. 2008. Evolutionary Robotics.
In Handbook of Robotics. Springer Verlag, Berlin.
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