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ABSTRACT
Developing complex behaviors for aquatic robots is a difficult en-
gineering challenge due to the uncertainty of an underwater en-
vironment. Neuroevolution provides one method of dealing with
this type of problem. Artificial neural networks discern different
conditions by mapping sensory input to responses, and evolution-
ary computation provides a training algorithm suitable to the high
dimensionality of the problem. In this paper, we present results
of applying neuroevolution to an aquatic robot tasked with station
keeping, that is, maintaining a given position despite surrounding
water flow. The virtual device exposed to evolution is modeled af-
ter a physical counterpart that has been fabricated with a 3D printer
and tested in physical environments. Evolved behaviors exhibit a
variety of unexpected, complex fin/flipper movements that enable
the robot to achieve and maintain station, despite water flow from
different directions. Moreover, the results show that evolved con-
trollers are able to effectively carry out this task using only infor-
mation from a simulated accelerometer and gyroscope, matching
the inertial measurement unit (IMU) on the actual robot.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—Robotics,
Autonomous vehicles

Keywords
Evolutionary Robotics, Neural Network, Application, Simulation,
Station Keeping, Aquatic Robotics, Neuroevolution

1. INTRODUCTION
Increasingly, mobile robots with embedded microprocessors and

electronic control systems aid humans in a variety of tasks. While
many applications currently rely on remote-controlled units, in-
creasing levels of autonomy are expected to produce systems that
can assist in a growing list of difficult and dangerous applications.
One domain in which autonomy is particularly important is aquatic
sensing, where human oversight is often limited, if not impossible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Mobile aquatic sensors are likely to play a critical role in ecosys-
tem management, tracking of hazardous wastes, and surveillance of
harbors and coastal waterways. While some of these applications
can employ propeller-based robots, in others fin-based locomotion
potentially offers better maneuverability, less noise and less dis-
ruption of the environment. In such devices, often termed robotic
fish [22], fin movements are typically achieved with either small
motors [4, 6, 21, 23] or deformation of electroactive polymers [3].
For instance, Chen et al. [3] demonstrated that a carangiform (that
is, propulsion primarily generated by a caudal fin) robotic fish can
successfully navigate the surface of water with a single actuator.
Other studies of biomimetic aquatic robots have yielded insight into
the dynamics of fish locomotion [1, 12, 14] and collective behav-
iors [8, 16].

Despite these advances, aquatic robots still do not approach their
biological counterparts in terms of maneuverability or autonomy;
the materials, sensors and actuators that make up a robotic fish
simply are not as effective as organic tissue. Unlike meter-sized
autonomous underwater vehicles (AUVs) that can house sophisti-
cated hardware for sensing, actuation and data processing, robotic
fish are usually required to be small (8-30 cm in length) and rel-
atively inexpensive. To that end, they are typically equipped with
low-precision sensors for navigation (accelerometers, gyroscopes,
GPS, and digital compasses) and relatively small batteries, making
energy management a critical issue. Yet, these robots are required
to negotiate aquatic environments characterized by uncertainties re-
sulting from waves, currents and turbulence, as well as plant growth
and other obstacles. While mathematical models of the hydro-
dynamic interactions help to evaluate structures and mechanisms
prior to development, the design process remains a challenge due
to the large number of parameters involved in producing effective
locomotion under different conditions. Each combination of differ-
ent materials and electromechanical constraints produces different
performance and requires detailed knowledge of material proper-
ties. These factors directly affect not only low-level control, but
also higher-level decision making on how to maneuver the robot to
carry out complex tasks.

Evolutionary computation methods are well suited to such high-
dimensional problems. By broadly sampling the solution space,
evolutionary algorithms are able to test for and blend the beneficial
aspects of individual solutions in order to produce effective results.
In particular, neuroevolution has emerged as an important tool in
developing controllers for systems that must cope with uncertainty
and nonlinear dynamics [9, 11]. Evolved neural controllers have
been shown to be capable of such tasks, including bipedal walk-
ing [15], quadruped gait control [5], navigation [2], and control of
a finless rocket [10]. Typically, a simulation environment is uti-
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(a) (b) (c) (d) (e)

Figure 1: Modeling and fabrication of an aquatic robot. From left to right: (a) evolutionary experiment based on a simulation model;
(b) corresponding SolidWorks model for prototype; (c) 3D-printed passive components of prototype; (d) integration of electronic
components and battery into the prototype; (e) assembled, painted and waterproofed prototype in the flow tank. The physical
prototype’s main body is 13cm long and 8cm in diameter with fins that are 8cm long and 2cm wide.

lized to accelerate the design process. Even a coarse approxima-
tion of the target environment can give insight into what constitutes
a successful control strategy, although higher fidelity simulation
can provide better results [13]. Moreover, by focusing on find-
ing solutions that are good enough, as opposed to the global opti-
mum, evolutionary computation is able to handle situations, such
as highly dynamic aquatic environments, where exhaustive search
of the controller space is infeasible.

Our research integrates evolutionary computation, efficient mod-
els of physical materials, and rapid prototyping in order to ex-
plore novel designs for robotic fish and other types of robots; see
Figure 1. We conduct these studies on a testbed for evolutionary
robotics research, termed Evolution Park. The testbed includes
rack-mounted computer clusters and a collection of high-end graph-
ics workstations enable evolution of both controllers and morpholo-
gies, along with high-precision interactive simulations of the result-
ing robots. A multi-material 3D printer enables rapid prototyping
of robot models produced through computational evolution. The
printer is capable of simultaneously jetting materials with different
properties in a single build, enabling direct fabrication of complex
structures, such as fins that comprise semi-rigid struts and more
pliable inner membranes, as well as printing of molds for intricate
metal parts. The printed forms are then coupled with electronic
control systems, motors, and sensors to produce fully functional
robots. To evaluate robots, experiments are conducted in a 4500-
gallon tank with underwater and ceiling-mounted video cameras, or
an elliptical flow tank in which the robots are exposed to currents
and turbulence; see Figure 1. Outdoor experiments are conducted
on ponds and lakes near the Michigan State University campus.

(a) (b)

Figure 2: Components of the Evolution Park experimental en-
vironment: (a) 4500-gallon custom-built tank for robotic fish
experiments; (b) elliptical flow tank for studying behaviors in
the presence of water currents.

In this paper, we describe a study on the evolution of controllers
for station keeping, whereby an aquatic robot is required to main-
tain a specified position despite surrounding water flow. A behavior
exhibited by many species of fish, station keeping is important to
robotic tasks such as identification of stationary objects and collec-
tion of water quality data at a specified location. Station keeping
in aquatic robots is similar to hovering in flying insects, which has
been studied as a component of morphological evolution in [18].
Here, we use the NEAT algorithm [20] to evolve controllers for
the aquatic robotic platform, shown in Figure 1, that includes two
actuated lateral “flippers,” an actuated caudal fin, and an inertial
measurement unit (IMU). In this study, we address station keeping
in the presence of external forces produced by laminar water flow.
As opposed to a turbulent flow, which is characterized by eddies,
a laminar flow occurs when the water flows at a constant rate in
parallel layers, with no mixing between layers. To achieve station,
a robotic controller must coordinate the actuation of all motors in
an effort to locomote against external forces by interpreting iner-
tial (i.e., linear and angular acceleration) data. To the best of our
knowledge, aquatic station keeping has not previously been studied
in evolutionary robotics.

The primary contributions of this paper are threefold. The first
concerns input to the simulated controller. Typically, neural con-
trollers work with feedback obtained from both sensory input and
physical hardware responses. However, we found that decoupling
the controller from direct motor feedback, and instead using only
input from a simulated IMU (corresponding to the IMU chip we
used in the physical prototype), produced effective behaviors. Sec-
ond, we discovered that for this particular task, a cumulative fit-
ness function was most effective, but that it had to ignore a sig-
nificant “startup phase” in which the robot could lose fitness in
the process of re-orienting itself. Third, we observed a number
of interesting gaits and other movements that enabled the robot to
achieve and maintain station in the presence of different laminar
flows. Specifically, the evolved neural controllers in several tri-
als were able to identify the direction of flow and correctly orient
themselves through complex movements before facing their target
station and then transitioning to simpler forward swimming. In on-
going work, we plan to integrate the evolved controllers into our
physical prototype and evaluate it in the elliptical flow tank shown
in Figure 1.

Section 2 presents an overview of the simulated robot, the simu-
lation environment including hydrodynamic model, artificial neural
networks and the station keeping task. Experiments and results are
presented in Section 3, along with a description of specific evolved
behaviors for different flows followed by conclusions in Section 4.
Videos of the evolved behaviors are available through links pro-
vided throughout the paper.
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2. METHODS
In this section, we describe the models and concepts relevant to

evolving neural controllers for the aquatic robot.

2.1 Robot Model
The robotic model developed for this study was designed to emu-

late the form and function of a physical device, seen in Figure 1(e).
As shown, the model consists of a static body, a caudal fin and two
continuous rotation lateral flippers. This design has some resem-
blance to a biological fish, however, the functionality of the flippers
is significantly different in both range of motion and possible be-
haviors. Specifically, the flippers are not limited to a defined range,
instead exhibiting a 360� range of motion in both directions, while
the caudal fin is limited to a ± 30� symmetric range of motion. The
fins used in this study are assumed to be rigid; other studies address
flexible components [4,17]. With these three actuated components,
a wide range of three-dimensional maneuvers are possible, provid-
ing evolution with a broad slate to discover unique gait patterns for
different environments and problems.

An important goal in this study is for the simulated model to
mimic the physical prototype in form and sensing abilities. Despite
the availability of servo encoders, which provide feedback on the
state of the motors, the capabilities of the robot were kept mini-
mal in order to examine how the evolved solutions perform with
limited sensory information. This disconnect between mechanical
positioning and the control signal sent to a motor creates a situation
in which the neural controller is dependent only upon its perception
of the surrounding environment, rather than feedback from a motor
position, which may be incorrect over time due to hardware decay.
Hence, the virtual robot does not have exact position or speed in-
formation for its servo motors. Instead, inertial data (i.e., linear and
angular acceleration) is provided by a simulated inertial measure-
ment unit (IMU), matching the hardware of the physical prototype.
Thus, the robot’s controller must interpret sensory data provided by
the simulated IMU to determine how actuators change the body’s
state. In this study we do not consider error in the IMU data, which
is relegated to future work.

2.2 Simulation Environment
The simulation environment used to evaluate candidate solutions

is based on the Open Dynamics Engine (ODE) [7], a rigid body
physics simulation engine. While ODE provides a method for re-
solving forces and torques into motion, it does not include fluid
dynamics. For this study, we incorporated a model based on hydro-
dynamic drag [23]. This model evaluates hydrodynamic forces by
examining each component (i.e., simulated rigid body) of the robot
independently. A drag force is applied to each face of the compo-
nent. Drag acts in opposition to linear velocity and is scaled by the
area of a given face and a constant hydrodynamic drag coefficient.
In this method, only the faces that oppose the direction of travel
experience drag. Propulsion is the result of a net force generated
from each individual face’s force. Algorithm 1 outlines how hy-
drodynamic drag is calculated for all robot components. This sim-
ulation environment provides efficient computation of robot-fluid
interactions while minimizing CPU time required to evaluate so-
lutions. A more accurate fluid dynamics simulator might provide
higher fidelity, but the overhead incurred by such a system would
significantly limit the number of individuals and generations that
we could evaluate in the same amount of time. Furthermore, in
this initial phase of our investigation, we are most interested in the
general behaviors that evolve.

Algorithm 1 Hydrodynamic model. Adapted from [19].

for each body do
lin_vel getLinearV elocity(body)
body_rot getBodyRotation(body)
for each face do

area face_area
norm (face_normal ⇤ body_rot)
force norm ⇤ lin_vel ⇤ area ⇤ drag_coeff
if force > 0 then

addForce(force)
end if

end for
end for

2.3 Neural Controller
In this study, neural controllers are evolved with the NEAT algo-

rithm, which evolves recurrent artificial neural networks (ANNs)
with a modified genetic algorithm [20]. With NEAT, only the num-
ber of inputs and outputs must be specified, while the hidden lay-
ers and connectivity are modified through the evolutionary process.
Relevant NEAT parameters used in this study were: a dropoff age
of 200, survival threshold of 0.2, mutation only probability of 0.25
and a mate only probability of 0.2. For this study, we have nine
inputs, three outputs, and the ANN is activated every 5ms of simu-
lation time. Two outputs control speed of the flipper servos, and the
third governs oscillation of the caudal fin servo. Three of the inputs
are the previous ANN outputs, another three are the robot’s current
three-dimensional position (obtained through the simulated IMU
data), and the final three inputs describe the difference between the
current position and the target position. Inputs were chosen for
their ability to model values that are available to a physical robot,
which will hopefully simplify the transfer of evolved controllers
from simulation to reality in future work. It is important to note
that servo motor inputs for the ANN were based upon the previous
outputs, and do not directly reflect the mechanical position of the
simulated motors.

2.4 Evolution of Station Keeping
Station keeping is challenging in aquatic environments where en-

vironmental dynamics make it difficult for the robot to hold posi-
tion for tasks such as monitoring and inspection. In our experimen-
tal setup, we consider station keeping to be the ability to hold the
robot’s center of mass at a desired location in space in the presence
of a laminar flow. An example of a solution attempting to reach
station can be seen in Figure 3. The station point is represented by
the convergence of the three white lines and a white sphere) and
the robot’s center of mass is represented as the convergence of the
three green lines. Accomplishing station keeping requires multiple
steps for a robot’s neural controller. First, the robot must interpret
the direction and speed of flow using the inputs received from the
environment. Next, the neural network is activated and produces a
set of outputs based on the current inputs. Finally, motors are actu-
ated to respond to the inputs and the control loop repeats to move
toward and ultimately maintain station.

In our setup, an individual’s evaluation involves an initial tran-
sient phase and an evaluation phase in which fitness is accumu-
lated every 250ms. The transient period allows the robot to iden-
tify the direction of flow and then reorient itself using movements
that might otherwise cause a decrease in fitness (i.e., moving away
from the station point). We implemented this transient period af-
ter observing preliminary results where individuals were not ca-
pable of reorienting themselves to flows approaching from certain
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Figure 3: A demonstration of the station keeping task. The
sphere and crossing lines indicate the desired station keeping
point for the robot. Maximum fitness is accrued when the robot
brings its center of mass, denoted by the green lines, to intersect
with this station point.

directions. Instead, these solutions would attempt to hold station
immediately using body orientations that were not very effective.
This strategy led to the individuals drifting out of the fitness area
without actually accomplishing the station keeping task. During
the evaluation phase, fitness is accumulated periodically, creating
an evolutionary pressure to hold station throughout an entire eval-
uation period, instead of just at the conclusion of the evaluation
period. Fitness is calculated as follows:

distance =
⇣p

(xT � xt)2 + (yT � yt)2 + (zT � zt)2
⌘3

(1a)

fitness =

⇢
10� (distance) if > 0

0 otherwise
(1b)

where (xT , yT , zT ) is the desired station position and (xt, yt, zt) is
the current position. This fitness function creates a spherical zone
in which individuals can accrue fitness. As an individual moves
closer to the station point, its fitness score for that timestep in-
creases. A cubic gradient encourages solutions to move toward and
maintain station at the target location rather than just stay relatively
close. Individuals accumulate no fitness when outside the sphere
but are not explicitly penalized.

3. EXPERIMENTS AND RESULTS
Four separate trials, illustrated in Figure 4, were conducted to

evolve station keeping for flows originating from different direc-
tions relative to the robot’s initial orientation. Trial 1 simulates a
flow from the front; Trial 2 from the rear; Trial 3 from the left; and
Trial 4 from the right-front. Each trial consists of 25 replicate runs
evolved for 2000 generations with a population of 100 individuals.
Each individual was simulated for 120 seconds with only the sec-
ond half being used to calculate the fitness. The four trials were
conducted independently, with solutions being evolved to handle a
specific flow situation. A time step of 5ms was used in the simula-
tion environment, giving each individual solution a total of 24,000
neural controller updates during a run.

Figure 4: Direction of flow in each of the four trials. Trial 1
involved a flow coming from straight ahead. In trial 2, the flow
comes directly from behind. For trial 3, the flow came from the
side of the body. Finally, in trial 4 the flow came 45 degrees
from straight ahead.

Evolved Behaviors.
Depending on the direction of the flow, evolved behaviors varied

from simple forward swimming locomotion to complex acrobatic
maneuvers that reorient the robot towards a flow. In Trial 1, a sim-
ulated laminar flow from upstream (i.e., from the front to the back
of the robot) was applied. This configuration served as a bench-
mark to measure performance of the subsequent trials, as the robot
did not have to reorient itself prior to maintaining station. Evolved
gaits for this solution were reminiscent of natural fish locomotion,
with both the caudal fin and flippers working in a coordinated os-
cillatory motion to swim against the flow. A video of this solution
is available at http://y2u.be/fb_JzvkXfKU. Trial 2 simulated
a flow pushing on the rear of the robot. Initially, we had expected to
see solutions that used the flippers to maintain station while keep-
ing the orientation relatively stable. However, evolved solutions
instead developed a more effective maneuver in order to bring the
caudal fin into an effective position to counteract the flow. An early
individual and a late generation video can be seen in the follow-
ing videos; early generation: http://y2u.be/m8ka0Ay7wNo and
late generation: http://y2u.be/UufbnEGFwV4. As depicted in
Figure 5, the robot flipped itself over, and then executed a forward
motion similar to that seen in the first trial. Reorienting the body
into an effective position for forward propulsion demonstrates the
controller’s ability to identify and counteract the force generated by
a laminar flow.

In Trial 3, a simulated flow exerts force against the side of the
robot. Of the four trials conducted, this proved to be the most chal-
lenging, apparently due to the difficulty of turning 90 degrees to
the left in the allotted time. A video showing a middle generation
evolved individual can be seen at http://y2u.be/uszEpt-O9n0.
For this trial, the expected behavior was to turn 90 degrees and face
the flow without any need to rotate along another axis. However,
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Figure 5: Behavior of an evolved solution in Trial 2. The first 60s, which is the transient phase, is utilized to reorient itself against a
laminar flow pushing on the robot from left to right. The robot executes a 180 degree flip to bring the caudal fin into a position from
which it can provide the greatest thrust against the flow. In this solution, the flippers are used to flip the robot as well as make minor
adjustments once the robot is in an effective position. A video of this evolved solution is available at http://y2u.be/UufbnEGFwV4.

Figure 6: Action taken by an evolved solution in Trial 4. In this trial, an individual faces a laminar flow at a 45� angle to the robot’s
front. The robot spends the first 50s reorienting itself against the flow. After 50 seconds, the robot has achieved a relatively stable
station and begins to accumulate high levels of fitness by using the flippers and fin in a coordinated effort to maintain its center over
the station point. A video of this evolved behavior is available at http://y2u.be/HIDHC3KG7Yw.

evolved solutions instead exhibited a more complex maneuver, ap-
parently because a 90 degree turn proved time intensive. Instead,
the evolved behavior favored a combination of the flipping motion
seen in Trial 2 with a roll to bring the body into an effective position
for swimming against the flow. Trial 3 individuals had difficulty
achieving station within the time allowed as the initial reorienta-
tion required a significant amount of the evaluation period.

For Trial 4, a simulated flow was applied at a 45 degree angle
to the robot’s initial right-front. As depicted in Figure 6, evolved
individuals demonstrated the ability of the controller to respond to
the direction of flow and attain station keeping during the course
of an individual evaluation. Images in Figure 6 are taken at 10
second intervals over the first 70 seconds of simulation time. Ini-
tially, the robot is displaced from its station. The robot begins to
react at approximately 10s when it starts to orient itself to the flow
by using its flippers to rotate the body while the fin provides for-

ward propulsion. Fitness evaluation begins at 60s. By this time
the robot has achieved, and can maintain, station by working to
correct its position relative to the given station point. Videos of
an early generation individual and the evolved solution described
previously are available at: http://y2u.be/dF_5-3I6Bl4 and
http://y2u.be/HIDHC3KG7Yw, respectively.

Fitness Evaluation.
Fitness results from the trials are shown in Figure 7 and 8. These

results provide insight into the relative difficulty that each flow pre-
sented to the evolutionary process. Specifically, in Trial 1, where
the robot directly faced the flow, solutions achieved near perfect
results, where a fitness of 1 correlates to solutions that maintained
station for the entire evaluation phase. Apparently, the lack of need
to reorient the body helped to produce such high fitnesses. Fig-
ure 9 shows the final distribution of the best evolved individuals for
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Figure 7: Fitness of the best evolved results from the trials.
Trial 1 was able to achieve a near perfect fitness score as it did
not have to reorient itself prior to holding station. The other
trials had some success with achieving station although their
fitness scores were lower than Trial 1. This was likely due to
the movements required to reorient themselves to flows.

Figure 8: Average fitness of the population of evolved results
from the trials. Trials 2, 3, and 4 had very low average fitnesses
due to the difficulty of accomplishing station keeping. Many
individuals were able to swim, but left the station area, accruing
no fitness during the evaluation period.

Figure 9: Box plot of the best fitness values for each replicate
run in the four trials. Box indicates the upper and lower quar-
tiles, median is represented as the center line in the boxes. Ends
of the whiskers represent the maximum and minimum values,
excluding outliers.

each of the replicate runs. This plot illustrates the relative difficulty
associated with the different flows. As can be seen in the results
from Trials 2, 3 and 4, only a few solutions were able gain high
fitness. The flows faced in these trials required the evolved individ-
uals to both reorient themselves and develop effective swimming
gaits. Typically, the evolved behaviors required more time for re-
orientation and were still doing so at the beginning of the fitness
evaluation phase. Average fitnesses in the final three trials were
low as many individuals swam with no regard to the station keep-
ing task. This resulted in them moving out of the fitness area prior
to accumulating any measure of fitness.

Behavior Comparison.
Figure 10 presents a top down view of two evolved solutions

from Trial 2 (Figure 5 presents snapshots of the final evolved indi-
vidual’s movement over time). In this plot, we see the final evolved
solution drift outside of the fitness area before moving back in and
ultimately holding station inside the reward zone. In contrast, the
early generation individual, selected after 25 generations is contin-
uously pushed farther away. This early individual started swim-
ming only after one minute of simulation time and was not able
to correctly identify the station keeping task. While the evolved
solution exhibits behavior similar to that of the early individual,
it executes its movements much earlier in the simulation. Videos
of these two evolved solutions can be seen at http://y2u.be/
m8ka0Ay7wNo and http://y2u.be/UufbnEGFwV4.

Figure 11 plots trajectory information for the final solution and
an early generation solution in Trial 4 (Figure 6 presents the gait
that the final evolved solution takes to achieve station). For the fi-
nal evolved solution, the robot initially moves outside of the fitness
gathering area. However, this maneuver occurs during the tran-
sient phase, allowing the evolved solution to move without losing
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Figure 10: Two-dimensional, top-down trajectory plot for an
evolved solution and an early generation candidate solution
from Trial 2. The grey circle represents the area of fitness re-
ward. The evolved solution is initially displaced by the flow
before identifying the direction of flow, reacting to it and then
achieving station. In the figure, the early generation individual
drifts out of the plot area before moving the flippers at all. It
eventually settles into a steady state of moving its flippers con-
tinuously well outside the fitness area.

fitness. The earlier controller fails to identify the flow and can be
seen drifting away over time. Even though the robot does manage
to swim with some coordination, it lacks the ability to identify the
flow direction and coordinate its swimming to act against the force.
Consequently, this individual ultimately is pushed out of the fitness
reward area. Videos of these two solutions can be seen at http:
//y2u.be/dF_5-3I6Bl4 and http://y2u.be/HIDHC3KG7Yw.

Many evolved solutions exhibited swimming behaviors but were
not able to coordinate those movements with the second task of
identifying and holding against the flow. For example, one indi-
vidual was able to effectively swim directly forward, however, the
direction of flow in the trial (from the side) caused it to gradually
drift out of the fitness reward zone, resulting in the individual gath-
ering less than 1% of the available fitness.

4. CONCLUSIONS
One of the challenges facing any evolutionary robotics process

is how to assign fitness. Specifically, station keeping required re-
warding solutions for maintaining station at a desired point, while
not penalizing solutions that used movements outside of the fitness
area to reach more effective orientations. In preliminary tests, fit-
ness was allowed to accumulate from the beginning of the run, cre-
ating an unnecessary pressure to perform well from the start. Such
a fitness metric makes it difficult for an evolutionary algorithm to
find strategies that sacrifice initial fitness for an overall better strat-
egy. Given the robot’s morphology in this study, the caudal fin
produces the greatest propulsion. Therefore, an effective strategy

Figure 11: Two-dimensional, top-down trajectory plot for an
evolved solution and an early generation candidate solution
from Trial 4. The grey circle represents the area of fitness re-
ward. The evolved solution is initially displaced by the flow
before identifying the direction of flow, reacting to it and then
achieving station.

is to first reorient the body towards the flow, and then focus on for-
ward motion. After observing results of preliminary runs, we im-
plemented a transient period. Rather than integrate additional met-
rics into the fitness function to account for movement, which might
bias solutions, the transient period allows for a movement period
without losing fitness. Moreover, the transient period allowed for
movements we had not expected, such as in Trial 3 where the robot
executed both a 180 degree flip and a 90 degree rotation. However,
even with the addition of a transient phase, Trial 3 was still quite
difficult. In the future, we will repeat the experiment with different
length transient periods and eventually allow the evolutionary al-
gorithm to adapt the transient and evaluation periods to appropriate
durations. This might allow behaviors to evolve with a transient
phase suitable for the given task.

A second observation concerns inputs to the controller. Physical
motors can suffer from performance degradation over time as well
as unexpected hardware failures. Predicting these inconsistencies
and failures can be challenging, if not impossible, and incorporat-
ing these behaviors into simulation is equally difficult. Decoupling
the controller from motor feedback can potentially alleviate some
of the problems experienced with noisy motors misreporting their
current state. In this approach, evolved results rely on the over-
all behavior of the robot and information obtained through sensors,
regardless of actual motor performance. As demonstrated in this
study, the neural controller is able to identify the environmental
conditions through the simulated IMU sensor values and maintain
a given station without the need for physical motor feedback.

Evolution of aquatic robots has been performed previously be-
ginning with the work of Sims [19]. Recent studies have focused
on optimizing the caudal fin of robotic fish [4]. In this study, solu-
tions exhibited unexpected locomotion strategies that involve both
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simple swimming gaits as well as more complex acrobatic ma-
neuvers to reorient the robot to different laminar flows. We have
shown that neuroevolution is capable of generating control strate-
gies to address station keeping against a variety of different flow
situations. Our ongoing work includes evaluating controllers in a
physical robot placed in an elliptical flow tank. We also plan to pur-
sue more generalized control strategies capable of holding station
against dynamic flow situations. Future work will include devel-
oping more accurate simulations and addressing issues arising in
transferring neural controllers from simulation to reality.
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